def make_instance(self, *args, **kwargs):
     states = [
         ts.TrackingState.NOT_INITIALIZED, ts.TrackingState.OK,
         ts.TrackingState.LOST
     ]
     kwargs = du.defaults(
         kwargs, {
             'system_id': np.random.randint(10, 20),
             'trajectory': {
                 np.random.uniform(0, 600): tf.Transform(
                     location=np.random.uniform(-1000, 1000, 3),
                     rotation=np.random.uniform(0, 1, 4))
                 for _ in range(100)
             },
             'ground_truth_trajectory': {
                 np.random.uniform(0, 600): tf.Transform(
                     location=np.random.uniform(-1000, 1000, 3),
                     rotation=np.random.uniform(0, 1, 4))
                 for _ in range(100)
             },
             'tracking_stats': {
                 np.random.uniform(0, 600): states[np.random.randint(
                     0, len(states))]
                 for _ in range(100)
             },
             'sequence_type':
             core.sequence_type.ImageSequenceType.SEQUENTIAL,
             'system_settings': {
                 'a': np.random.randint(20, 30)
             }
         })
     return vs.SLAMTrialResult(*args, **kwargs)
    def test_matches_too_close_are_trivial_matches(self):
        trajectory = {
            1.33333: tf.Transform(location=(100, 100, 0),
                                  rotation=(0, 0, 0, 1)),
            3.66667: tf.Transform(location=(100, 100, 0),
                                  rotation=(0, 0, 0, 1)),
            14.33333: tf.Transform(location=(-100, 100, 0),
                                   rotation=(0, 0, 0, 1)),
            15.66667: tf.Transform(location=(-100, 100, 0),
                                   rotation=(0, 0, 0, 1))
        }
        closures = {3.66667: 1.33333}
        trial_result = MockTrialResult(gt_trajectory=trajectory,
                                       loop_closures=closures)

        # Perform the benchmark with a larger threshold
        benchmark = lc.BenchmarkLoopClosure(distance_threshold=20,
                                            trivial_closure_index_distance=10)
        result = benchmark.benchmark_results(trial_result)
        self.assertEqual(match_res.MatchType.FALSE_POSITIVE,
                         result.matches[3.66667])
        self.assertEqual(match_res.MatchType.TRUE_NEGATIVE,
                         result.matches[15.66667])

        # Try again with a smaller threshold, should become a true positive,
        # since the indexes are further appart than the threshold
        benchmark = lc.BenchmarkLoopClosure(distance_threshold=20,
                                            trivial_closure_index_distance=1)
        result = benchmark.benchmark_results(trial_result)
        self.assertEqual(match_res.MatchType.TRUE_POSITIVE,
                         result.matches[3.66667])
        self.assertEqual(match_res.MatchType.FALSE_NEGATIVE,
                         result.matches[15.66667])
    def test_distance_threshold_determines_acceptable_matches(self):
        trajectory = {
            1.33333: tf.Transform(location=(100, 100, 0),
                                  rotation=(0, 0, 0, 1)),
            10.66667: tf.Transform(location=(110, 100, 0),
                                   rotation=(0, 0, 0, 1)),
            15.33333: tf.Transform(location=(-100, 100, 0),
                                   rotation=(0, 0, 0, 1)),
            20.66667: tf.Transform(location=(-110, 100, 0),
                                   rotation=(0, 0, 0, 1))
        }
        closures = {10.66667: 1.33333}
        trial_result = MockTrialResult(gt_trajectory=trajectory,
                                       loop_closures=closures)

        # Perform the benchmark with a larger threshold
        benchmark = lc.BenchmarkLoopClosure(distance_threshold=20)
        result = benchmark.benchmark_results(trial_result)
        self.assertEqual(match_res.MatchType.TRUE_POSITIVE,
                         result.matches[10.66667])
        self.assertEqual(match_res.MatchType.FALSE_NEGATIVE,
                         result.matches[20.66667])

        # Try again with a smaller threshold, should become a false positive
        benchmark = lc.BenchmarkLoopClosure(distance_threshold=1)
        result = benchmark.benchmark_results(trial_result)
        self.assertEqual(match_res.MatchType.FALSE_POSITIVE,
                         result.matches[10.66667])
        self.assertEqual(match_res.MatchType.TRUE_NEGATIVE,
                         result.matches[20.66667])
Exemplo n.º 4
0
 def test_set(self):
     a = imeta.LabelledObject(class_names=('class_1', ),
                              bounding_box=(152, 239, 14, 78),
                              label_color=(127, 33, 67),
                              relative_pose=tf.Transform(
                                  location=(123, -45, 23),
                                  rotation=(0.5, 0.23, 0.1)),
                              object_id='LabelledObject-18569')
     b = imeta.LabelledObject(class_names=('class_2', ),
                              bounding_box=(39, 169, 96, 16),
                              label_color=(2, 227, 34),
                              relative_pose=tf.Transform(location=(-246,
                                                                   468, 4),
                                                         rotation=(0.2, 0.3,
                                                                   0.4)),
                              object_id='LabelledObject-68478')
     c = imeta.LabelledObject(class_names=('class_3', ),
                              bounding_box=(148, 468, 82, 241),
                              label_color=(12, 82, 238),
                              relative_pose=tf.Transform(
                                  location=(85, -648, -376),
                                  rotation=(0.8, -0.64, -0.73)),
                              object_id='LabelledObject-87684')
     subject_set = {a, a, a, b}
     self.assertEqual(2, len(subject_set))
     self.assertIn(a, subject_set)
     self.assertIn(b, subject_set)
     self.assertNotIn(c, subject_set)
Exemplo n.º 5
0
    def begin(self):
        """
        Start producing images.
        This will trigger any necessary startup code,
        and will allow get_next_image to be called.
        Return False if there is a problem starting the source.
        :return: True iff we have successfully started iteration
        """
        if self._simulator is None:
            return False
        self._simulator.begin()
        self._current_index = 0
        self._velocity = np.random.uniform((-1, -1, 0), (1, 1, 0), 3)
        self._velocity = self._max_speed * self._velocity / np.linalg.norm(self._velocity)

        # Set the initial facing direction to point in a random direction and random reachable location
        for _ in range(4):
            self._simulator.move_camera_to(
                tf.Transform(location=self._simulator.current_pose.location +
                                      (np.random.randint(-1000, 1000), np.random.randint(-1000, 1000), 0)))
        self._simulator.move_camera_to(
            tf.Transform(location=self._simulator.current_pose.location +
                                  (np.random.randint(-1000, 1000), np.random.randint(-1000, 1000), 0),
                         rotation=tf3d.quaternions.axangle2quat((0, 0, 1), np.random.uniform(-np.pi, np.pi)),
                         w_first=True))
Exemplo n.º 6
0
 def test_hash(self):
     kwargs = {
         'class_names': ('class_1', ),
         'bounding_box': (152, 239, 14, 78),
         'label_color': (127, 33, 67),
         'relative_pose':
         tf.Transform(location=(123, -45, 23), rotation=(0.5, 0.23, 0.1)),
         'object_id':
         'LabelledObject-18569'
     }
     a = imeta.LabelledObject(**kwargs)
     b = imeta.LabelledObject(**kwargs)
     self.assertEqual(hash(a), hash(b))
     b = imeta.LabelledObject(
         **du.defaults({'class_names': 'class_41'}, kwargs))
     self.assertNotEqual(hash(a), hash(b))
     b = imeta.LabelledObject(
         **du.defaults({'bounding_box': (47, 123, 45, 121)}, kwargs))
     self.assertNotEqual(hash(a), hash(b))
     b = imeta.LabelledObject(
         **du.defaults({'label_color': (247, 123, 14)}, kwargs))
     self.assertNotEqual(hash(a), hash(b))
     b = imeta.LabelledObject(**du.defaults(
         {'relative_pose': tf.Transform((62, -81, 43), (0.1, 0.1,
                                                        0.1))}, kwargs))
     self.assertNotEqual(hash(a), hash(b))
     b = imeta.LabelledObject(
         **du.defaults({'object_id': 'Cat-12'}, kwargs))
     self.assertNotEqual(hash(a), hash(b))
 def test_find_relative_pose_changes_location_coordinates(self):
     pose = trans.Transform(location=(11, 12, 13))
     tf = trans.Transform(location=(10, 9, 8),
                          rotation=_make_quat((0, 0, 1), np.pi / 2),
                          w_first=True)
     pose_rel = tf.find_relative(pose)
     self.assert_close(pose_rel.location, (3, -1, 5))
 def test_constructor_clone(self):
     tf1 = trans.Transform(location=(1, 2, 3), rotation=(4, 5, 6, 7))
     tf2 = trans.Transform(tf1)
     self.assert_array(tf1.location, tf2.location)
     self.assert_array(tf1.rotation_quat(w_first=True),
                       tf2.rotation_quat(w_first=True))
     self.assert_array(tf1.transform_matrix, tf2.transform_matrix)
Exemplo n.º 9
0
    def test_reads_relative_to_first_pose(self):
        first_pose = tf.Transform(location=(15.2, -1167.9, -1.2), rotation=(0.535, 0.2525, 0.11, 0.2876))
        relative_trajectory = {}
        trajectory_text = ""
        for time in np.arange(0, 10, 0.45):
            pose = tf.Transform(location=(0.122 * time, -0.53112 * time, 1.893 * time),
                                rotation=(0.772 * time, -0.8627 * time, -0.68782 * time))
            relative_trajectory[time] = pose
            absolute_pose = first_pose.find_independent(pose)
            quat = absolute_pose.rotation_quat(w_first=True)
            trajectory_text += "{time},{x},{y},{z},{qw},{qx},{qy},{qz}\n".format(
                time=repr(time),
                x=repr(-1 * absolute_pose.location[1]),
                y=repr(-1 * absolute_pose.location[2]),
                z=repr(absolute_pose.location[0]),
                qw=repr(quat[0]), qx=repr(-1 * quat[2]), qy=repr(-1 * quat[3]), qz=repr(quat[1])
            )
            self.assertEqual(time, float(repr(time)))

        mock_open = mock.mock_open(read_data=trajectory_text)
        extend_mock_open(mock_open)
        with mock.patch('dataset.euroc.euroc_loader.open', mock_open, create=True):
            trajectory = euroc_loader.read_trajectory('test_filepath')
        self.assertEqual(len(trajectory), len(relative_trajectory))
        for time, pose in relative_trajectory.items():
            self.assertIn(time, trajectory)
            self.assertNPClose(pose.location, trajectory[time].location)
            self.assertNPClose(pose.rotation_quat(True), trajectory[time].rotation_quat(True))
Exemplo n.º 10
0
def create_noise(trajectory,
                 random_state,
                 time_offset=0,
                 time_noise=0.01,
                 loc_noise=100,
                 rot_noise=np.pi / 64):
    if not isinstance(loc_noise, np.ndarray):
        loc_noise = np.array([loc_noise, loc_noise, loc_noise])

    noise = {}
    for time, pose in trajectory.items():
        noise[time] = tf.Transform(
            location=random_state.uniform(-loc_noise, loc_noise),
            rotation=tf3d.quaternions.axangle2quat(
                random_state.uniform(-1, 1, 3),
                random_state.uniform(-rot_noise, rot_noise)),
            w_first=True)

    relative_frame = tf.Transform(location=random_state.uniform(
        -1000, 1000, 3),
                                  rotation=random_state.uniform(0, 1, 4))

    changed_trajectory = {}
    for time, pose in trajectory.items():
        relative_pose = relative_frame.find_relative(pose)
        noisy_time = time + time_offset + random_state.uniform(
            -time_noise, time_noise)
        noisy_pose = relative_pose.find_independent(noise[time])
        changed_trajectory[noisy_time] = noisy_pose

    return changed_trajectory, noise
    def test_down_is_down_vector(self):
        pose = trans.Transform(rotation=_make_quat((1, 0, 0), np.pi / 4),
                               w_first=True)
        self.assert_close((0, np.sqrt(2) / 2, -np.sqrt(2) / 2), pose.down)

        pose = trans.Transform(rotation=_make_quat((0, 1, 0), np.pi / 4),
                               w_first=True)
        self.assert_close((-np.sqrt(2) / 2, 0, -np.sqrt(2) / 2), pose.down)
    def test_right_is_left_vector(self):
        pose = trans.Transform(rotation=_make_quat((1, 0, 0), np.pi / 4),
                               w_first=True)
        self.assert_close((0, -np.sqrt(2) / 2, -np.sqrt(2) / 2), pose.right)

        pose = trans.Transform(rotation=_make_quat((0, 0, 1), np.pi / 4),
                               w_first=True)
        self.assert_close((np.sqrt(2) / 2, -np.sqrt(2) / 2, 0), pose.right)
    def test_forward_is_forward_vector(self):
        pose = trans.Transform(rotation=_make_quat((0, 1, 0), np.pi / 4),
                               w_first=True)
        self.assert_close((np.sqrt(2) / 2, 0, -np.sqrt(2) / 2), pose.forward)

        pose = trans.Transform(rotation=_make_quat((0, 0, 1), np.pi / 4),
                               w_first=True)
        self.assert_close((np.sqrt(2) / 2, np.sqrt(2) / 2, 0), pose.forward)
 def test_down_is_independent_of_location(self):
     quat = _make_quat((13, -4, 5), 13 * np.pi / 27)
     pose = trans.Transform(rotation=quat, w_first=True)
     down = pose.down
     for _ in range(10):
         pose = trans.Transform(location=np.random.uniform(-1000, 1000, 3),
                                rotation=quat,
                                w_first=True)
         self.assert_array(down, pose.down)
 def test_find_independent_pose_changes_orientation(self):
     pose = trans.Transform(location=(11, 12, 13),
                            rotation=_make_quat((1, 0, 0), np.pi / 4),
                            w_first=True)
     tf = trans.Transform(location=(10, 9, 8),
                          rotation=_make_quat((0, 0, 1), np.pi / 2),
                          w_first=True)
     pose_rel = tf.find_independent(pose)
     self.assert_close(pose_rel.euler, (0, np.pi / 4, np.pi / 2))
 def test_euler_each_axis(self):
     # Yaw
     qrot = _make_quat((0, 0, 1), np.pi / 6)
     tf = trans.Transform(rotation=qrot, w_first=True)
     self.assert_array(tf.euler, np.array([0, 0, np.pi / 6]))
     # Pitch
     qrot = _make_quat((0, 1, 0), np.pi / 6)
     tf = trans.Transform(rotation=qrot, w_first=True)
     self.assert_array(tf.euler, np.array([0, np.pi / 6, 0]))
     # Roll
     qrot = _make_quat((1, 0, 0), np.pi / 6)
     tf = trans.Transform(rotation=qrot, w_first=True)
     self.assert_array(tf.euler, np.array([np.pi / 6, 0, 0]))
def get_circle_pitch_trajectory():
    """
    Get a trajectory that moves in a 1m diameter circle, facing outwards
    :return:
    """
    framerate = 30  # frames per second
    angular_vel = np.pi / 36  # radians per second
    relative_pose = tf.Transform(location=(0.5, 0, 0), rotation=(0, 0, 0))
    return {
        time: (tf.Transform(rotation=(0, time * angular_vel,
                                      0))).find_independent(relative_pose)
        for time in np.arange(0, 2 * np.pi / angular_vel, 1 / framerate)
    }
    def test_relative_pose_contains_relative_point(self):
        loc = (-13, 27, -127)
        qrot = _make_quat(np.array((-1, 0.1, -0.37)), 7 * np.pi / 26)
        tf = trans.Transform(location=loc, rotation=qrot, w_first=True)

        point = np.array([41, -153, 16])
        pose = trans.Transform(location=point,
                               rotation=_make_quat((0, 1, 0), np.pi / 4),
                               w_first=True)
        pose_rel = tf.find_relative(pose)
        point_rel = pose_rel.location
        point_prime = tf.find_independent(point_rel)

        self.assert_close(point, point_prime)
    def test_find_relative_undoes_pose(self):
        loc = (-13, 27, -127)
        qrot = _make_quat(np.array((-1, 0.1, -0.37)), 7 * np.pi / 26)
        tf = trans.Transform(location=loc, rotation=qrot, w_first=True)

        pose = trans.Transform(location=(10, 100, -5),
                               rotation=_make_quat((0, 1, 0), np.pi / 4),
                               w_first=True)
        pose_rel = tf.find_relative(pose)
        pose_prime = tf.find_independent(pose_rel)

        self.assert_close(pose_prime.location, pose.location)
        self.assert_close(pose_prime.rotation_quat(w_first=True),
                          pose.rotation_quat(w_first=True))
 def test_hash(self):
     tf1 = trans.Transform(location=(1, 2, 3),
                           rotation=(-0.5, 0.5, 0.5, -0.5))
     tf2 = trans.Transform(location=(1, 2, 3),
                           rotation=(-0.5, 0.5, 0.5, -0.5))
     tf3 = trans.Transform(location=(1, 2, 4),
                           rotation=(-0.5, 0.5, 0.5, -0.5))
     tf4 = trans.Transform(location=(1, 2, 3),
                           rotation=(0.1, 0.2, 0.3, 0.4))
     self.assertEqual(hash(tf1), hash(tf1))
     self.assertEqual(hash(tf1), hash(tf2))
     self.assertNotEqual(hash(tf1), hash(tf3))
     self.assertNotEqual(hash(tf1), hash(tf4))
     self.assertEqual({tf1, tf1, tf1}, {tf1})  # Set literals
    def test_to_unreal_preserves_find_relative_simple(self):
        pose1 = mytf.Transform((73, -47, -23), (0.92387953, 0, 0.38268343, 0),
                               w_first=True)
        pose2 = mytf.Transform((-19, 83, -61), (0.5, -0.5, 0.5, -0.5),
                               w_first=True)
        relative_pose = pose1.find_relative(pose2)

        ue_pose1 = uetrans.transform_to_unreal(pose1)
        ue_pose2 = uetrans.transform_to_unreal(pose2)
        ue_relative_pose = ue_pose1.find_relative(ue_pose2)
        relative_pose_prime = uetrans.transform_from_unreal(ue_relative_pose)

        self.assert_close(relative_pose.location, relative_pose_prime.location)
        self.assert_close(relative_pose.rotation_quat(),
                          relative_pose_prime.rotation_quat())
    def test_pitch_to_unreal(self):
        # This pose is rotated 45 degrees clockwise around right (neg Y)
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((0, -1, 0),
                                                                   np.pi / 4),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((0, 45, 0), ue_pose.euler)

        # This pose is rotated 30 degrees anticlockwise around right (neg Y)
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((0, -1, 0),
                                                                   -np.pi / 6),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((0, -30, 0), ue_pose.euler)
Exemplo n.º 23
0
def create_random_trajectory(random_state, duration=600, length=100):
    return {
        random_state.uniform(0, duration):
        tf.Transform(location=random_state.uniform(-1000, 1000, 3),
                     rotation=random_state.uniform(0, 1, 4))
        for _ in range(length)
    }
def create_mock_image(width=128, height=128):
    """
    Make an image by drawing a bunch of semi-transparent squares
    This should actually have discernible features, in contrast to pure noise
    :param width:
    :param height:
    :return:
    """
    im = np.zeros((width, height, 3), dtype='uint8')
    for _ in range(10):
        shape = (np.random.randint(width), np.random.randint(height))
        position = (np.random.randint(1 - shape[0], width),
                    np.random.randint(1 - shape[1], height))
        colour = np.random.randint(0, 256, 3, dtype='uint8')
        im[max(0, position[1]):min(height, position[1] + shape[1]),
           max(0, position[0]):min(width, position[0] + shape[0]), :] += colour

    metadata = imeta.ImageMetadata(
        source_type=imeta.ImageSourceType.SYNTHETIC,
        hash_=b'\x1f`\xa8\x8aR\xed\x9f\x0b',
        environment_type=imeta.EnvironmentType.INDOOR_CLOSE,
        light_level=imeta.LightingLevel.WELL_LIT,
        time_of_day=imeta.TimeOfDay.DAY,
        lens_focal_distance=100,
        aperture=22,
        camera_pose=tf.Transform())
    return core.image_entity.ImageEntity(data=im,
                                         metadata=metadata,
                                         id_=bson.objectid.ObjectId())
Exemplo n.º 25
0
def make_relative_pose(x: float, y: float, z: float, qx: float, qy: float,
                       qz: float, qw: float) -> tf.Transform:
    """
    ORBSLAM2 is using the common CV coordinate frame Z forward, X right, Y down (I think)
    this function handles the coordinate frame

    Frame is: z forward, x right, y down
    Not documented, worked out by trial and error

    :param x: The x coordinate
    :param y: The y coordinate
    :param z: The z coordinate
    :param qx: The quaternion x coordinate
    :param qy: The quaternion y coordinate
    :param qz: The quaternion z coordinate
    :param qw: The quaternion w coordinate
    :return: A Transform object representing the pose of the current frame with respect to the previous frame
    """
    tf_matrix = np.matrix([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z],
                           [0, 0, 0, 1]])
    tf_matrix[0:3, 0:3] = tf3d.quaternions.quat2mat((qw, qx, qy, qz))
    coordinate_exchange = np.matrix([[0, 0, 1, 0], [-1, 0, 0, 0],
                                     [0, -1, 0, 0], [0, 0, 0, 1]])
    pose = np.dot(np.dot(coordinate_exchange, tf_matrix),
                  coordinate_exchange.T)
    return tf.Transform(pose)
Exemplo n.º 26
0
    def __init__(self, location=None, rotation=None):
        """

        :param location: A 4x4 homogenous transformation matrix, Transform object, or and 3-indexable tuple
        :param rotation: Any 3-indexable tuple listing rotation in degrees, order (roll, pitch, yaw)
        """
        if isinstance(location, np.ndarray) and location.shape == (4, 4):
            location = mytf.Transform(location)
        if isinstance(location, mytf.Transform):
            location = transform_to_unreal(location)
        if isinstance(location, UnrealTransform):
            self._x = location.x
            self._y = location.y
            self._z = location.z
            self._roll = location.roll
            self._pitch = location.pitch
            self._yaw = location.yaw
        else:
            if location is not None and len(location) >= 3:
                self._x, self._y, self._z = location
            else:
                self._x = self._y = self._z = 0
            if rotation is not None and len(rotation) >= 3:
                self._roll, self._pitch, self._yaw = rotation
            else:
                self._roll = self._pitch = self._yaw = 0
    def test_benchmark_results_returns_a_benchmark_result(self):
        trial_result = MockTrialResult(gt_trajectory={
            1.33333:
            tf.Transform(location=(100, 100, 0), rotation=(0, 0, 0, 1)),
            10.66667:
            tf.Transform(location=(100, 100, 0), rotation=(0, 0, 0, 1))
        },
                                       loop_closures={})

        benchmark = lc.BenchmarkLoopClosure(distance_threshold=20)
        result = benchmark.benchmark_results(trial_result)
        self.assertIsInstance(result, core.benchmark.BenchmarkResult)
        self.assertNotIsInstance(result, core.benchmark.FailedBenchmark)
        self.assertIsInstance(result, match_res.MatchBenchmarkResult)
        self.assertEqual(benchmark.identifier, result.benchmark)
        self.assertEqual(trial_result.identifier, result.trial_result)
    def test_roll_to_unreal(self):
        # This pose is rotated 45 degrees clockwise around X
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((1, 0, 0),
                                                                   np.pi / 4),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((45, 0, 0), ue_pose.euler)

        # And this is 30 degrees anticlockwise around X
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((1, 0, 0),
                                                                   -np.pi / 6),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((-30, 0, 0), ue_pose.euler)
 def make_instance(self, *args, **kwargs):
     kwargs = du.defaults(
         kwargs, {
             'system_id': np.random.randint(10, 20),
             'keypoints': self.keypoints,
             'sequence_type':
             core.sequence_type.ImageSequenceType.SEQUENTIAL,
             'system_settings': {
                 'a': np.random.randint(20, 30)
             },
             'keypoints_id': bson.ObjectId()
         })
     if 'timestamps' not in kwargs:
         kwargs['timestamps'] = {
             idx + np.random.uniform(0, 1): identifier
             for idx, identifier in enumerate(kwargs['keypoints'].keys())
         }
     if 'camera_poses' not in kwargs:
         kwargs['camera_poses'] = {
             identifier:
             tf.Transform(location=np.random.uniform(-1000, 1000, 3),
                          rotation=np.random.uniform(-1, 1, 4))
             for identifier in kwargs['keypoints'].keys()
         }
     return feature_result.FeatureDetectorResult(*args, **kwargs)
    def test_yaw_to_unreal(self):
        # This pose is rotated 45 degrees clockwise around up (Z)
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((0, 0, 1),
                                                                   np.pi / 4),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((0, 0, -45), ue_pose.euler)

        # This pose is rotated 30 degrees anticlockwise around up
        pose = mytf.Transform(location=(0, 0, 0),
                              rotation=tf.quaternions.axangle2quat((0, 0, 1),
                                                                   -np.pi / 6),
                              w_first=True)
        ue_pose = uetrans.transform_to_unreal(pose)
        self.assert_close((0, 0, 30), ue_pose.euler)