def forward(self, in0, in1): assert(in0.size()[0]==1) # currently only supports batchSize 1 if(self.colorspace=='RGB'): value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float') elif(self.colorspace=='Lab'): value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)), util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float') ret_var = Variable( torch.Tensor((value,) ) ) if(self.use_gpu): ret_var = ret_var.cuda() return ret_var