Exemplo n.º 1
0
def process3(folder):
    """ Post process data """
    print(folder)
    util.setup(folder)
    params = ['Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety', 'karnofsky', 'Index_value']
    image_ids = find_images()
    result = util.post_calculations(image_ids)
    print(len(result['all']))
    # util.avg_calculation(result['all'], 'all_N=112', None, True, folder, save_sum=True)
    # util.avg_calculation(result['img'], 'img_N=112', None, True, folder)

    for qol_param in params:
        if qol_param == "Delta_qol2":
            (image_ids_with_qol, qol) = util.get_qol(image_ids, "Delta_qol")
            qol = [-1 if _temp <= -0.15 else 0 if _temp < 0.15 else 1 for _temp in qol]
        else:
            (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param)
        if qol_param not in ["karnofsky", "Delta_kps"]:
            qol = [_temp * 100 for _temp in qol]
        default_value = -100
        print(qol_param)
        print(len(qol))
        result = util.post_calculations(image_ids_with_qol)
        for label in result:
            if label == 'img':
                continue
            print(label)
            util.avg_calculation(result[label], label + '_' + qol_param + '_N=112', qol, True, folder, default_value=default_value)
            util.median_calculation(result[label], label + '_' + qol_param + '_N=112', qol, True, folder, default_value=default_value)
Exemplo n.º 2
0
def process2(folder):
    """ Post process data Delta"""
    print(folder)
    util.setup(folder)
    params = ['Delta_qol', 'Delta_qol2', 'Delta_mobility', 'Delta_selfcare', 'Delta_activity', 'Delta_pain', 'Delta_anixety', 'Delta_kps']
    image_ids = find_images()
    result = util.post_calculations(image_ids)
    print(len(result['all']))
    util.avg_calculation(result['all'], 'all_N=112', None, True, folder, save_sum=True)
    util.avg_calculation(result['img'], 'img_N=112', None, True, folder)
    print("\n\n\n\n\n")

    for qol_param in params:
        if qol_param == "Delta_qol2":
            (image_ids_with_qol, qol) = util.get_qol(image_ids, "Delta_qol")
            qol = [-1 if _temp <= -0.15 else 0 if _temp < 0.15 else 1 for _temp in qol]
        else:
            (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param)
        qol = [_temp * 100 for _temp in qol]
        default_value = -300
        print(qol_param, len(qol))
        result = util.post_calculations(image_ids_with_qol)
        for label in result:
            if label == 'img':
                continue
            print(label)
            # util.avg_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
            util.median_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
Exemplo n.º 3
0
def process(folder, censor_date, survival_groups, pids_to_exclude=None):
    """ Post process data """
    print(folder)
    util.setup(folder)

    image_ids, survival_days = util.get_image_id_and_survival_days(study_id="GBM_survival_time", exclude_pid=pids_to_exclude, censor_date_str=censor_date)
    result = util.post_calculations(image_ids)
    print('Total: ' + str(len(result['all'])) + ' patients')
    util.avg_calculation(result['all'], 'tumor', None, True, folder, save_sum=True)
    util.mortality_rate_calculation(result['all'], '_all_year', survival_days, True, folder, default_value=-1, max_value=150, per_year=True)
    util.avg_calculation(result['img'], 'volume', None, True, folder)

    image_ids, survival_days = util.get_image_id_and_survival_days(study_id="GBM_survival_time", exclude_pid=pids_to_exclude, censor_date_str=censor_date,resection=True)
    result = util.post_calculations(image_ids)
    print('Resected: ' + str(len(result['all'])) + ' patients')
    util.avg_calculation(result['all'], 'tumor_resected', None, True, folder, save_sum=True)
    util.avg_calculation(result['img'], 'volume_resected', None, True, folder)
    util.mortality_rate_calculation(result['all'], '_resected_year', survival_days, True, folder, default_value=-1, max_value=150, per_year=True)

    for group in survival_groups:
        image_ids, survival_days = util.get_image_id_and_survival_days(study_id="GBM_survival_time", exclude_pid=pids_to_exclude, censor_date_str=censor_date,survival_group=group)
        result = util.post_calculations(image_ids)
        print('Group ' + str(group) + ': ' + str(len(result['all'])) + ' patients')
        label = 'tumor_' + str(group[0]) + '-' + str(group[1])
        util.avg_calculation(result['all'], label, None, True, folder, save_sum=True)
Exemplo n.º 4
0
def process(folder, censor_date):
    """ Post process data """
    print(folder)
    util.setup(folder)

    image_ids, survival_days = util.get_image_id_and_survival_days(
        study_id="GBM_survival_time", censor_date_str=censor_date)
    result = util.post_calculations(image_ids)
    print('Total: ' + str(len(result['all'])) + ' patients')
    util.avg_calculation(result['all'],
                         'tumor',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result['img'], 'volume', None, True, folder)
    util.mortality_rate_calculation(result['all'],
                                    '',
                                    survival_days,
                                    True,
                                    folder,
                                    default_value=-1)

    image_ids, survival_days = util.get_image_id_and_survival_days(
        study_id="GBM_survival_time",
        censor_date_str=censor_date,
        resection=True)
    result = util.post_calculations(image_ids)
    print('Resected: ' + str(len(result['all'])) + ' patients')
    util.avg_calculation(result['all'],
                         'tumor_resected',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result['img'], 'volume_resected', None, True, folder)
    util.mortality_rate_calculation(result['all'],
                                    '_resected',
                                    survival_days,
                                    True,
                                    folder,
                                    default_value=-1)

    survival_groups = [[0, 182], [183, 730], [731, float('Inf')]]

    for group in survival_groups:
        image_ids, survival_days = util.get_image_id_and_survival_days(
            study_id="GBM_survival_time",
            censor_date_str=censor_date,
            survival_group=group)
        result = util.post_calculations(image_ids)
        print('Group ' + str(group) + ': ' + str(len(result['all'])) +
              ' patients')
        label = 'tumor_' + str(group[0]) + '-' + str(group[1])
        util.avg_calculation(result['all'],
                             label,
                             None,
                             True,
                             folder,
                             save_sum=True)
Exemplo n.º 5
0
def process(folder):
    """ Post process data distribution and baseline"""
    print(folder)
    util.setup(folder)
    params = ['Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety', 'karnofsky', 'Index_value']
    image_ids = find_images_163()
    result = util.post_calculations(image_ids)
    print(len(result['all']))
    util.avg_calculation(result['all'], 'all_N=163', None, True, folder, save_sum=True)
    util.avg_calculation(result['img'], 'img_N=163', None, True, folder)

    image_ids = do_img_registration_GBM.find_images()
    result = util.post_calculations(image_ids)
    print(len(result['all']))
    util.avg_calculation(result['all'], 'all_N=170', None, True, folder, save_sum=True)
    util.avg_calculation(result['img'], 'img_N=170', None, True, folder)
    for qol_param in params:
        (image_ids_with_qol, qol) = util.get_qol(image_ids, qol_param)
        if qol_param not in ["karnofsky", "Delta_kps"]:
            qol = [_temp * 100 for _temp in qol]
        default_value = -100
        print(qol_param)
        print(len(qol))
        result = util.post_calculations(image_ids_with_qol)
        for label in result:
            if label == 'img':
                continue
            print(label)
            # util.avg_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
            util.median_calculation(result[label], label + '_' + qol_param, qol, True, folder, default_value=default_value)
Exemplo n.º 6
0
def process(folder, exclude):
    """ Post process data """
    print(folder)
    util.setup(folder, "meningiomer")

    image_ids = find_images(exclude=exclude)

    result = util.post_calculations(image_ids)
    print(len(result['all']))
    util.avg_calculation(result['all'],
                         'all',
                         None,
                         True,
                         folder,
                         save_sum=True,
                         save_pngs=True)
    util.avg_calculation(result['img'], 'img', None, True, folder)
Exemplo n.º 7
0
def process(folder):
    """ Post process data """
    print(folder)
    util.setup(folder)

    for grade in [2, 3, 4]:
        image_ids, survival_days = util.get_image_id_and_survival_days(
            glioma_grades=[grade])
        result = util.post_calculations(image_ids)

        print(len(result['all']))
        util.avg_calculation(result['all'],
                             'all_',
                             None,
                             True,
                             folder,
                             save_sum=True)
        util.avg_calculation(result['img'], 'img_', None, True, folder)

        for label in result:
            if label == 'img':
                continue
            util.avg_calculation(result[label],
                                 'survival_time_grade_' + str(grade),
                                 survival_days,
                                 True,
                                 folder,
                                 default_value=-1)
Exemplo n.º 8
0
def process(folder, glioma_grades):
    """ Post process data """
    print(folder)
    util.setup(folder)
    params = [
        'Index_value', 'Global_index', 'Mobility', 'Selfcare', 'Activity',
        'Pain', 'Anxiety', 'karnofsky'
    ]
    (image_ids, qol) = util.get_image_id_and_qol(None,
                                                 exclude_pid,
                                                 glioma_grades=glioma_grades)
    print(len(image_ids))
    result = util.post_calculations(image_ids)
    print(len(result['all']))
    util.avg_calculation(result['all'],
                         'all',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result['img'], 'img', None, True, folder)

    # (image_ids, qol) = util.get_image_id_and_qol('Index_value', exclude_pid, glioma_grades=glioma_grades)
    # result = util.post_calculations(image_ids)
    # util.calculate_t_test(result['all'], 1)

    for qol_param in params:
        (image_ids, qol) = util.get_image_id_and_qol(qol_param, exclude_pid)
        if not qol_param == "karnofsky":
            qol = [_temp * 100 for _temp in qol]
        if not qol_param == "Index_value":
            default_value = -100
        else:
            default_value = 0
        print(image_ids)
        result = util.post_calculations(image_ids)
        for label in result:
            print(label)
            if label == 'img':
                continue
            util.avg_calculation(result[label],
                                 label + '_' + qol_param,
                                 qol,
                                 True,
                                 folder,
                                 default_value=default_value)
            util.std_calculation(result[label], label + '_' + qol_param, qol,
                                 True, folder)
def process(folder, pids_to_exclude=()):
    """ Post process data """
    print(folder)
    util.setup(folder, 'MolekylareMarkorer')
    conn = sqlite3.connect(util.DB_PATH, timeout=120)
    conn.text_factory = str
    cursor = conn.execute(
        '''SELECT pid from MolekylareMarkorer ORDER BY pid''')
    image_ids = []
    image_ids_1 = []
    image_ids_2 = []
    image_ids_3 = []
    tag_data_1 = []
    tag_data_2 = []
    tag_data_3 = []
    img = nib.load("/media/leb/data/Atlas/lobes_brain.nii")
    lobes_brain = img.get_data()
    label_defs = util.get_label_defs()
    res_right_left_brain = {}
    res_lobes_brain = {}
    patients = '\nPID  MM\n----------------\n'

    for pid in cursor:
        pid = pid[0]
        if pid in pids_to_exclude:
            continue

        _id = conn.execute('''SELECT id from Images where pid = ?''',
                           (pid, )).fetchone()
        if not _id:
            print("---No data for ", pid)
            continue
        _id = _id[0]

        _mm = conn.execute(
            "SELECT Subgroup from MolekylareMarkorer where pid = ?",
            (pid, )).fetchone()[0]
        if _mm is None:
            print("No mm data for ", pid)
            patients += str(pid) + ': ?\n'
            continue

        _desc = conn.execute(
            "SELECT comments from MolekylareMarkorer where pid = ?",
            (pid, )).fetchone()[0]
        if _desc is None:
            _desc = ""

        _filepath = conn.execute(
            "SELECT filepath_reg from Labels where image_id = ?",
            (_id, )).fetchone()[0]
        if _filepath is None:
            print("No filepath for ", pid)
            continue

        com, com_idx = util.get_center_of_mass(util.DATA_FOLDER + _filepath)
        val = {}
        val['Name'] = str(pid) + "_" + str(_mm)
        val['PositionGlobal'] = str(com[0]) + "," + str(com[1]) + "," + str(
            com[2])
        val['desc'] = str(_desc)

        lobe = label_defs[lobes_brain[com_idx[0], com_idx[1], com_idx[2]]]
        right_left = 'left' if com_idx[0] < 99 else 'right'
        res_lobes_brain[lobe] = res_lobes_brain.get(lobe, [0, 0, 0])
        res_right_left_brain[right_left] = res_right_left_brain.get(
            right_left, [0, 0, 0])
        print(right_left, lobe)
        if _mm == 1:
            res_lobes_brain[lobe][0] += 1
            res_right_left_brain[right_left][0] += 1
            image_ids_1.extend([_id])
        elif _mm == 2:
            res_lobes_brain[lobe][1] += 1
            res_right_left_brain[right_left][1] += 1
            image_ids_2.extend([_id])
        elif _mm == 3:
            res_lobes_brain[lobe][2] += 1
            res_right_left_brain[right_left][2] += 1
            image_ids_3.extend([_id])

        image_ids.extend([_id])
        print(pid, _mm)
        patients += str(pid) + ': ' + str(_mm) + '\n'
        if _mm == 1:
            tag_data_1.append(val)
        elif _mm == 2:
            tag_data_2.append(val)
        elif _mm == 3:
            tag_data_3.append(val)

    print(format_dict(res_lobes_brain))
    lobes_brain_file = open(folder + "lobes_brain.txt", 'w')
    lobes_brain_file.write(format_dict(res_lobes_brain))
    lobes_brain_file.close()
    lobes_brain_file = open(folder + "lobes_brain.txt", 'a')
    lobes_brain_file.write(format_dict(res_right_left_brain))
    lobes_brain_file.write(patients)
    lobes_brain_file.close()

    print(len(image_ids))

    result = util.post_calculations(image_ids_1)
    util.avg_calculation(result['all'],
                         'mm_1',
                         None,
                         True,
                         folder,
                         save_sum=True)

    result = util.post_calculations(image_ids_2)
    util.avg_calculation(result['all'],
                         'mm_2',
                         None,
                         True,
                         folder,
                         save_sum=True)

    result = util.post_calculations(image_ids_3)
    util.avg_calculation(result['all'],
                         'mm_3',
                         None,
                         True,
                         folder,
                         save_sum=True)

    result = util.post_calculations(image_ids)
    util.avg_calculation(result['all'],
                         'mm_1_2_3',
                         None,
                         True,
                         folder,
                         save_sum=True)

    return
    tag_data = {
        "tag_data_1": tag_data_1,
        "tag_data_2": tag_data_2,
        "tag_data_3": tag_data_3
    }
    pickle.dump(tag_data, open("tag_data.pickle", "wb"))

    cursor.close()
    conn.close()
    util.write_fcsv("mm_1", folder, tag_data_1, '1 0 0', 13)
    util.write_fcsv("mm_2", folder, tag_data_2, '0 1 0', 5)
    util.write_fcsv("mm_3", folder, tag_data_3, '0 0 1', 6)
    result = util.post_calculations(image_ids)
    util.avg_calculation(result['all'],
                         'all',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result['img'], 'img', None, True, folder)
def process(folder):
    """ Post process data """
    print(folder)
    util.setup(folder)

    image_ids = find_images("post")
    if True:
        import nibabel as nib
        conn = sqlite3.connect(util.DB_PATH)
        conn.text_factory = str
        cursor = conn.execute(
            '''SELECT pid from Patient where study_id = ? ''',
            ("LGG_reseksjonsgrad", ))
        k = 0
        for row in cursor:
            k += 1
            cursor2 = conn.execute(
                '''SELECT id from Images where pid = ? and diag_pre_post = ?''',
                (row[0], "post"))
            ids = []
            for _id in cursor2:
                ids.append(_id[0])
            cursor2.close()
            if not ids:
                continue
            images_post = post_calculations(ids)
            file_name_post = images_post['all'][0]

            cursor2 = conn.execute(
                '''SELECT id from Images where pid = ? and diag_pre_post = ?''',
                (row[0], "pre"))
            ids = []
            for _id in cursor2:
                ids.append(_id[0])
            images_pre = util.post_calculations(ids)
            file_name_pre = images_pre['all'][0]

            img_pre = nib.load(file_name_pre)
            img_post = nib.load(file_name_post)
            temp = img_pre.get_data() - img_post.get_data()
            temp = temp.flatten()
            print(sum(temp < 0), file_name_pre, file_name_post)

        cursor.close()
        conn.close()
        # return

    result_post = post_calculations(image_ids)
    print(len(result_post['all']))
    util.avg_calculation(result_post['all'],
                         'all_post',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result_post['img'], 'img_post', None, True, folder)

    image_ids = find_images("pre")
    result_pre = util.post_calculations(image_ids)
    print(len(result_pre['all']))
    util.avg_calculation(result_pre['all'],
                         'all_pre',
                         None,
                         True,
                         folder,
                         save_sum=True)
    util.avg_calculation(result_pre['img'], 'img_pre', None, True, folder)
    util.calc_resection_prob(result_pre['all'], result_post['all'],
                             'resection_prob', True, folder, -1)
    #        util.setup("LGG_POST_RES/", "LGG")
    #    elif False:
    #        import do_img_registration_LGG_PRE as do_img_registration
    #        util.setup("LGG_PRE_RES/", "LGG")
    #    elif False:
    #        import do_img_registration_GBM as do_img_registration
    #        util.setup("GBM_RES2/", "GBM")

    params = ['Index_value', 'Global_index', 'Mobility', 'Selfcare', 'Activity', 'Pain', 'Anxiety']
    util.mkdir_p("LGG_GBM_RES")

    FOLDER = "LGG_GBM_RES/"  # "LGG_GBM_RES/GBM"
    util.setup(FOLDER)

    (image_ids, qol) = util.get_image_id_and_qol('Index_value')
    print(image_ids, len(image_ids))
    result = util.post_calculations(image_ids)
    util.calculate_t_test(result['all'], 0.85)

    for qol_param in params:
        (image_ids, qol) = util.get_image_id_and_qol(qol_param)
        print(image_ids)
        result = util.post_calculations(image_ids)
        for label in result:
            print(label)
            if label == 'img':
                continue
            util.avg_calculation(result[label], label + '_' + qol_param, qol, True, FOLDER)
    util.avg_calculation(result['img'], label, None, True, FOLDER)
    util.sum_calculation(result['img'], label, None, True, FOLDER)