Exemplo n.º 1
0
	def delete_landmark(self, ind):
		self.L -= 1
		self.dim_state -= 2
		del self.observation_counter[ind]
		# remove landmark from all ensemble members
		# print([_ for _ in range(self.state_without_landmarks + ind, self.state_without_landmarks + ind+self.dim_landmarks)])
		self.ensemble = np.delete(self.ensemble, [_ for _ in range(self.state_without_landmarks + self.dim_landmarks*ind, self.state_without_landmarks + self.dim_landmarks*ind+self.dim_landmarks)], axis=1)
		# re-calculate estimation
		self.state = calc_mean(self.ensemble, 2)
Exemplo n.º 2
0
	def sigma_pos(self):
		"""
		Overwrite to only compute covariance upon call!
		:return: The covariance approximation C
		"""
		x_dash = calc_mean(self.ensemble[:, :3], 2)
		X = (1.0 / sqrt(self.N - 1)) * (self.ensemble[:, :3] - x_dash).T
		C = np.dot(X, X.T)
		return C
Exemplo n.º 3
0
	def get_sigma(self):
		"""
		Overwrite to only compute covariance upon call!
		:return: The covariance approximation C
		"""
		x_dash = calc_mean(self.ensemble, 2)
		X = (1.0 / sqrt(self.N - 1)) * (calc_diff(self.ensemble, x_dash, 2)).T
		C = np.dot(X, X.T)
		return C
Exemplo n.º 4
0
	def add_landmark(self, z):
		self.L += 1
		self.observation_counter.append(0)
		self.dim_state += 2
		tmp_ensemble = np.zeros((self.N, self.dim_state))
		for j in range(self.N):
			tmp_ensemble[j] = np.concatenate((self.ensemble[j], get_coordinate_from_range_bearing(z, self.ensemble[j])))
		self.ensemble = tmp_ensemble
		# don't forget to update the state
		self.state = calc_mean(self.ensemble, 2)
Exemplo n.º 5
0
def ACE(data, s, window_size=3):
    """
    ACE Global Algorithm
    :param data: the data to run on
    :param s: the signal to match
    :return: the results of ace local
    """
    step = window_size // 2

    Xdim, Ydim, Bands = data.shape
    # calc valid values
    min_i = min_j = step
    max_i, max_j = Xdim - step - 1, Ydim - step - 1

    ace = np.zeros((Xdim, Ydim))
    for i, row in enumerate(data):
        if i not in range(min_i, max_i):
            continue
        for j, x in enumerate(row):
            if j not in range(min_j, max_j):
                continue
            # calc window
            window = data[(i - step):(i + step + 1),
                          (j - step):(j + step + 1), :]
            # calc mu and sigma
            mu = calc_mean(window)
            sigma = calc_cov(window)

            # what if its not invertable ... ?
            if (np.linalg.det(sigma) < 0.00001):
                Pad = 0.1 * np.identity(Bands)
                # make an "identity matrix" and put some small padding along it!
                sigma = np.add(sigma, Pad)

            sigma_inv = np.linalg.inv(sigma)

            # calc num
            numerator = np.square(
                np.matmul(np.matmul(s - mu, sigma_inv),
                          np.matrix.transpose(x - mu)))
            # calc denom
            lowerl = np.matmul(np.matmul(s - mu, sigma_inv),
                               np.matrix.transpose(s - mu))
            lowerr = np.matmul(np.matmul(x - mu, sigma_inv),
                               np.matrix.transpose(x - mu))
            denominator = lowerl * lowerr
            # divide and store!
            ace[i, j] = numerator / denominator
    return ace
Exemplo n.º 6
0
	def predict(self, f, u=0, f_args=(), landmark_white_noise=1.0):
		"""
		Predict the next prior.
		:param f: The state transition function
		:param u: The control arguments for the state transition function
		:param f_args: Additional arguments for the state transition function
		:param landmark_white_noise: The spread for the white noise added to each landmark
		"""
		s_landmarks = [0] * (self.dim_landmarks * self.L)
		for ind in range((self.dim_landmarks * self.L)):
			if abs(self.state[ind + self.state_without_landmarks]) < self.eps:
				s_landmarks[ind] = 0.0
			else:
				s_landmarks[ind] = landmark_white_noise

		# s = np.concatenate((self.Q.diagonal(), s_landmarks))
		s = np.concatenate(([0.0, 0.0, 0.0], s_landmarks))

		self.ensemble = np.asarray(
			[f(member, u, self.Q, f_args, do_noise=True) + np.random.normal(0, s, self.dim_state) for member in self.ensemble])

		self.normalize_ensemble_angles()

		self.state = calc_mean(self.ensemble, 2)
Exemplo n.º 7
0
	def update(self, z, h, ind, h_args=(), full_ensemble=False):
		"""
		Update the current prediction using incoming measurements
		:param full_ensemble:
		:param z: The incoming measurement
		:param h: The measurement function
		:param ind: The index of the landmark according to the measurement
		:param h_args: Additional arguments for the state transition function
		"""
		# according to roth_2017, we do not need a batch update, but can iterate over the updates individually.

		# check if landmark was never seen before
		position_of_landmark_in_state_vector = 2 * ind + self.state_without_landmarks

		new_landmark = abs(self.state[position_of_landmark_in_state_vector]) < self.eps \
							and abs(self.state[position_of_landmark_in_state_vector + 1]) < self.eps

		if new_landmark:
			# remember landmark - IN EACH MEMBER!
			for i in range(self.N):

				self.ensemble[i, position_of_landmark_in_state_vector:position_of_landmark_in_state_vector + self.dim_landmarks] \
					= get_coordinate_from_range_bearing(z, self.ensemble[i])

		if full_ensemble:
			tmp_ensemble = self.ensemble
			col_indx = [col_ind for col_ind in range(self.dim_state)]
		else:
			# lets try something: select only robot state and landmark state and form new tmp state
			# row_indx -> ensemble member, col_indx -> value in ensemble member
			col_indx = np.array([v for v in range(self.state_without_landmarks)] + [b for b in range(
				position_of_landmark_in_state_vector, position_of_landmark_in_state_vector + self.dim_landmarks)])

			tmp_ensemble = self.ensemble[:, col_indx]
		tap_N = len(tmp_ensemble)

		# Use this function for using correct landmark
		# x_h = np.asarray([h(member, h_args) for member in tmp_ensemble])
		if full_ensemble:
			x_h = np.asarray([h(member, self.get_ith_landmark_from_member(member, ind)) for member in tmp_ensemble])
		else:
			x_h = np.asarray([h(member, self.get_ith_landmark_from_member(member, 0)) for member in tmp_ensemble])

		# Angles can not be "meaned" like normal values!
		# Therefore: Use own mean function

		# Calculate the mean of the chosen ensemble
		x_dash = calc_mean(tmp_ensemble, 2)
		# Calculate the expected measurement for each ensemble member
		y_dash = calc_mean(x_h, 1)

		# Tang_2015 argue, that the following has to hold: y_dash == h(np.mean(tmp_ensemble, axis=0), h_args)

		# This is the normal calculation
		X = (1.0 / sqrt(tap_N - 1)) * (calc_diff(tmp_ensemble, x_dash, 2)).T
		Y = (1.0 / sqrt(tap_N - 1)) * (calc_diff(x_h, y_dash, 1)).T

		# Follow simple calculation for computation of Kalman gain
		D = np.dot(Y, Y.T) + self.R
		K = np.dot(X, Y.T)
		K = np.dot(K, inv(D))

		v_r = np.random.multivariate_normal([0] * self.dim_z, self.R, self.N)

		for j in range(self.N):
			# self.ensemble[j, col_indx] += np.dot(K, z + v_r[j] - x_h[j])
			diff = z - x_h[j] + v_r[j]
			diff[1] = normalize_angle(diff[1])
			update = np.dot(K, diff)

			self.ensemble[j, col_indx] += update

		self.normalize_ensemble_angles()
		self.state = calc_mean(self.ensemble, 2)
Exemplo n.º 8
0
    def save_and_print(self):
        # Auto-save
        if self.iter % self.autosave_iter == 0:
            if self.use_animation:
                self.animation.save_file(self.iter, self.log_dir)
            if self.agent.name == 'rl':
                self.agent.save_file(self.log_dir, self.iter)

        # 결과 출력 코드
        # # 파일로 저장
        filename = "results"
        extension = ".csv"
        if not os.path.isfile(self.log_dir + filename + extension):
            headstr = 'Iteration, num_f_survived, total rewards, loss'
        else:
            headstr = False
        tempdic_rawdata = {"%d" % self.iter: "%d, %.2f, %.4f" % (self.env.num_f_survived, self.episode_reward, calc_mean(self.agent.loss_history))}
        write_data(self.log_dir, data=tempdic_rawdata, filename=filename, head=headstr, extension=extension)

        # # Program에 출력
        if self.termination[0][:4].lower() == 'time':
            temp_time_h = (self.termination[1] - time() + self.start_time) / (60.0 * 60)
            temp_time_m = (self.termination[1] - time() + self.start_time) % (60.0 * 60) / 60.0
            temp_time_s = (self.termination[1] - time() + self.start_time) % 60.0
            txt = "simulation iter %d ends. %dh:%dm:%.0fs left. num_f_survived: %d, cum_rewards: %.2f, loss: %.3f, sec/iter: %.1f" \
                  % (self.iter, temp_time_h, temp_time_m, temp_time_s, self.env.num_f_survived, self.episode_reward, calc_mean(self.agent.loss_history), time()-self.iter_start_time)
        elif self.termination[0][:4].lower() == 'iter':
            txt = "simulation iter %d of %d ends. num_f_survived: %d, cum_rewards: %.2f, loss: %.3f, sec/iter: %.1f" \
                  % (self.iter, self.termination[1] - 1, self.env.num_f_survived, self.episode_reward, calc_mean(self.agent.loss_history), time()-self.iter_start_time)
        print(txt)

        if self.agent.name == 'rl':
            print("\n[time spent at]")
            for key in self.agent.time_check.keys():
                print(key, ": %.2f" % self.agent.time_check[key])
            print("\n[num_visit]")
            for key in self.agent.num_visit.keys():
                print(key, ": ", self.agent.num_visit[key])
            print("\n\n")

        if self.gui_framework:
            self.gui_framework.write_console(txt)