Exemplo n.º 1
0
def main(cli_args):
    parser = argparse.ArgumentParser(
        description="CSCE 496 HW 2, Classify Cifar data")
    parser.add_argument('--input_dir',
                        type=str,
                        default='/work/cse496dl/shared/homework/02',
                        help='Numpy datafile input')
    parser.add_argument(
        '--model_dir',
        type=str,
        default='./homework_2/',
        help='directory where model graph and weights are saved')
    parser.add_argument('--epoch',
                        type=int,
                        default=100,
                        help="Epoch : number of iterations for the model")
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help="Batch Size")
    parser.add_argument('--model',
                        type=int,
                        help=" '1' for basic model, '2' for best model")
    parser.add_argument(
        '--stopCount',
        type=int,
        default=100,
        help="Number of times for dropping accuracy before early stopping")
    args_input = parser.parse_args(cli_args)

    if args_input.input_dir:
        input_dir = args_input.input_dir
    else:
        raise ValueError("Provide a valid input data path")

    if args_input.model_dir:
        model_dir = args_input.model_dir
    else:
        raise ValueError("Provide a valid model data path")

    if args_input.epoch:
        epochs = args_input.epoch
    else:
        raise ValueError("Epoch value cannot be null and has to be an integer")

    if args_input.batch_size:
        batch_size = args_input.batch_size
    else:
        raise ValueError(
            "Batch Size value cannot be null and has to be an integer")

    if args_input.model:
        model = args_input.model
    else:
        raise ValueError("Model selection must not be empty")

    if args_input.stopCount:
        stop_counter = args_input.stopCount
    else:
        raise ValueError("StopCount have to be an int")

    input_dir = '/work/cse496dl/shared/homework/02'
    #Make output model dir
    if os.path.exists(model_dir) == False:
        os.mkdir(model_dir)

    #Load Data
    x = tf.placeholder(tf.float32, [None, 32, 32, 3], name='input_placeholder')
    y = tf.placeholder(tf.float32, [None, 100], name='labels')

    #Specify Model
    if (str(model) == '1'):
        train_images, train_labels, test_images, test_labels, val_images, val_labels = util.load_data(
            "")
        _, outputLayer = initiate_basic_model(x)
        #Run Training with early stopping and save output
        counter = stop_counter
        prev_winner = 0
        curr_winner = 0
        optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
        cross_entropy = util.cross_entropy_op(y, outputLayer)
        global_step_tensor = util.global_step_tensor('global_step_tensor')
        train_op = util.train_op_basic(cross_entropy, global_step_tensor,
                                       optimizer)
        conf_matrix = util.confusion_matrix_op(y, outputLayer, 100)
        saver = tf.train.Saver()
        with tf.Session() as session:
            session.run(tf.global_variables_initializer())
            counter = stop_counter
            for epoch in range(epochs):
                if counter > 0:
                    print("Epoch : " + str(epoch))
                    util.training(batch_size, x, y, train_images, train_labels,
                                  session, train_op, conf_matrix, 100)
                    accuracy = util.validation(batch_size, x, y, val_images,
                                               val_labels, session,
                                               cross_entropy, conf_matrix, 100)
                    if epoch == 0:
                        prev_winner = accuracy
                        print("Saving.......")
                        saver.save(session,
                                   os.path.join("./homework_2/", "homework_2"))
                    else:
                        curr_winner = accuracy
                        if (curr_winner > prev_winner) and (counter > 0):
                            prev_winner = curr_winner
                            print("Saving.......")
                            saver.save(
                                session,
                                os.path.join("./homework_2/", "homework_2"))
                        else:
                            counter -= 1

                    test_accuracy = util.test(batch_size, x, y, test_images,
                                              test_labels, session,
                                              cross_entropy, conf_matrix, 100)
                    #Calculate the confidence interval
                    value1, value2 = util.confidence_interval(
                        test_accuracy, 1.96, test_images.shape[0])
                    print("Confidence Interval : " + str(value1) + " , " +
                          str(value2))
                else:
                    break

    elif (str(model) == '2'):
        sparsity_weight = 5e-3
        #Load the data and reshape it
        train_data = np.load(
            os.path.join(os.path.join(input_dir, 'imagenet_images.npy')))
        train_images, train_labels, test_images, test_labels, val_images, val_labels = util.load_data(
            "")
        #train_data = np.reshape(train_data, [-1,32,32,1])
        #Add noise to the data
        noise_level = 0.2
        x_noise = x + noise_level * tf.random_normal(tf.shape(x))
        code, outputs = initiate_autoencoder(x_noise, 100)
        #Optimizer for Autoencoder
        sparsity_loss = tf.norm(code, ord=1, axis=1)
        reconstruction_loss = tf.reduce_mean(tf.square(outputs -
                                                       x))  # Mean Square Error
        total_loss = reconstruction_loss + sparsity_weight * sparsity_loss
        optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
        train_op = optimizer.minimize(total_loss)
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            util.autoencoder_training(x, code, epochs, batch_size, train_data,
                                      sess, train_op)
            saver.save(sess, os.path.join("./homework_2/", "homework_2"))
        print("Done : " + str(code))

        _, outputLayer = initiate_dense_model(code)

        #Run Training with early stopping and save output
        counter = stop_counter
        prev_winner = 0
        curr_winner = 0
        optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
        cross_entropy = util.cross_entropy_op(y, outputLayer)
        global_step_tensor = util.global_step_tensor('global_step_tensor')
        #train_op = util.train_op_encoder(cross_entropy, global_step_tensor, optimizer, var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "code_layer"))
        train_op = util.train_op_basic(cross_entropy, global_step_tensor,
                                       optimizer)
        conf_matrix = util.confusion_matrix_op(y, outputLayer, 100)
        with tf.Session() as session:
            session.run(tf.global_variables_initializer())
            if os.path.isfile(os.path.join("./homework_2/", "homework_2")):
                saver = tf.train.import_meta_graph("homework_2.meta")
                saver.restore(session, "./homework_2/homework_2")
            code_encode = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                            "code_layer")
            session.run(
                tf.variables_initializer(code_encode,
                                         name="init_encoded_layer"))
            tf.stop_gradient(
                tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                  "init_encoded_layer"))
            counter = stop_counter
            for epoch in range(epochs):
                if counter > 0:
                    print("Epoch : " + str(epoch))
                    util.training(batch_size, x, y, train_images, train_labels,
                                  session, train_op, conf_matrix, 100)
                    accuracy = util.validation(batch_size, x, y, val_images,
                                               val_labels, session,
                                               cross_entropy, conf_matrix, 100)
                    if epoch == 0:
                        prev_winner = accuracy
                        print("Saving.......")
                        saver.save(session,
                                   os.path.join("./homework_2/", "homework_2"))
                    else:
                        curr_winner = accuracy
                        if (curr_winner > prev_winner) and (counter > 0):
                            prev_winner = curr_winner
                            print("Saving.......")
                            saver.save(
                                session,
                                os.path.join("./homework_2/", "homework_2"))
                        else:
                            print("Validation Loss : " +
                                  str(curr_winner - prev_winner))
                            counter -= 1

                    test_accuracy = util.test(batch_size, x, y, test_images,
                                              test_labels, session,
                                              cross_entropy, conf_matrix, 100)
                    #Calculate the confidence interval
                    value1, value2 = util.confidence_interval(
                        test_accuracy, 1.96, test_images.shape[0])
                    print("Confidence Interval : " + str(value1) + " , " +
                          str(value2))
                else:
                    break
Exemplo n.º 2
0
def initiate_vgg_model(features,
                       labels,
                       filename,
                       num_classes,
                       weight_decay,
                       learning_rate,
                       handle="training",
                       reuse_model=None):
    #VGG Architecture
    with tf.variable_scope("vgg_arch_model", reuse=reuse_model) as scope:
        #Declare feature input for the model
        x_placeholder = tf.reshape(features / 255, [-1, 224, 224, 3])

        #Hidden Layer 1
        with tf.name_scope('first_layer'):
            conv_1 = tf.layers.conv2d(
                x_placeholder,
                64,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_1')

            conv_2 = tf.layers.conv2d(
                conv_1,
                64,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_2')
            max_pool_1 = tf.layers.max_pooling2d(conv_2, 2, 2, padding='same')

        with tf.name_scope('second_layer'):

            conv_3 = tf.layers.conv2d(
                max_pool_1,
                128,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_3')
            conv_4 = tf.layers.conv2d(
                conv_3,
                128,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_4')
            max_pool_2 = tf.layers.max_pooling2d(conv_4, 2, 2, padding='same')

        with tf.name_scope('third_layer'):

            conv_5 = tf.layers.conv2d(
                max_pool_2,
                256,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_5')

            conv_6 = tf.layers.conv2d(
                conv_5,
                256,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_6')

            max_pool_3 = tf.layers.max_pooling2d(conv_6, 2, 2, padding='same')

        with tf.name_scope('fourth_layer'):

            conv_7 = tf.layers.conv2d(
                max_pool_3,
                512,
                3,
                padding='same',
                activation=tf.nn.relu,
                kernel_regularizer=tf.contrib.layers.l2_regularizer(
                    scale=0.01),
                bias_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01),
                name='conv_7')

        max_pool_4 = tf.layers.max_pooling2d(conv_7, 2, 2, padding='same')
        flat_layer = tf.contrib.layers.flatten(max_pool_4)
        #inclusion of batch normalization vs dropout based on vgg.py model?
        fc_layer_1 = tf.layers.dense(flat_layer,
                                     4096,
                                     activation=tf.nn.relu,
                                     name='fc_layer_1')

        #Batch Normalization
        batch_norm_layer_1 = tf.layers.batch_normalization(fc_layer_1,
                                                           training=True)
        #Dropout
        dropout_layer_1 = tf.layers.dropout(batch_norm_layer_1, 0.5)

        fc_layer_2 = tf.layers.dense(dropout_layer_1,
                                     4096,
                                     activation=tf.nn.relu,
                                     name='fc_layer_2')

        #Batch Normalization
        batch_norm_layer_2 = tf.layers.batch_normalization(fc_layer_2,
                                                           training=True)
        #Dropout
        dropout_layer_2 = tf.layers.dropout(batch_norm_layer_2, 0.5)

        #num_output is not yet defined
        logits = tf.layers.dense(dropout_layer_2, num_classes, name='output')

        tf.identity(logits, name='output')

        #Declare Loss and Optimizer functions
        label_placeholder = tf.one_hot(labels, num_classes)
        optimizer = tf.contrib.opt.MomentumWOptimizer(
            weight_decay=weight_decay,
            learning_rate=learning_rate,
            momentum=0.9,
            name="MomentumWeightDecay")
        global_step_tensor = util.global_step_tensor('global_step_tensor')

        #with tf.name_scope("images"):
        #    tf.summary.image(str(handle+"_image"), features[0])

        with tf.name_scope("cost"):
            cross_entropy = util.cross_entropy_op(label_placeholder, logits,
                                                  "cross_entropy")
            train_op = util.train_op(cross_entropy, global_step_tensor,
                                     optimizer)
            tf.summary.scalar(str(handle + "_loss"), cross_entropy)

        with tf.name_scope("confusion_matrix"):
            conf_matrix_op = util.confusion_matrix_op(label_placeholder,
                                                      logits, num_classes)
            conf_mtx = tf.reshape(tf.cast(conf_matrix_op, tf.float32),
                                  [1, num_classes, num_classes, 1])
            tf.summary.image(str(handle + "_confusion_matrix"), conf_mtx)

        with tf.name_scope("accuracy"):
            accuracy = tf.equal(tf.argmax(logits, 1),
                                tf.argmax(label_placeholder, 1))
            accuracy = tf.reduce_mean(tf.cast(accuracy, tf.float32))
            tf.summary.scalar(str(handle + "_accuracy"), accuracy)
    return scope, train_op, cross_entropy, conf_matrix_op, accuracy
Exemplo n.º 3
0
def main(cli_args):
    parser = argparse.ArgumentParser(
        description="CSCE 496 HW 1, Classify Fashion MNIST data")
    parser.add_argument('--input_dir',
                        type=str,
                        default='/work/cse496dl/shared/homework/01',
                        help='Numpy datafile input')
    parser.add_argument(
        '--model_dir',
        type=str,
        default='./homework_1/',
        help='directory where model graph and weights are saved')
    parser.add_argument('--epoch',
                        type=int,
                        default=100,
                        help="Epoch : number of iterations for the model")
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help="Batch Size")
    parser.add_argument('--model',
                        type=int,
                        help=" '1' for basic model, '2' for best model")
    parser.add_argument(
        '--stopCount',
        type=int,
        default=100,
        help="Number of times for dropping accuracy before early stopping")
    args_input = parser.parse_args(cli_args)

    if args_input.input_dir:
        input_dir = args_input.input_dir
    else:
        raise ValueError("Provide a valid input data path")

    if args_input.model_dir:
        model_dir = args_input.model_dir
    else:
        raise ValueError("Provide a valid model data path")

    if args_input.epoch:
        epochs = args_input.epoch
    else:
        raise ValueError("Epoch value cannot be null and has to be an integer")

    if args_input.batch_size:
        batch_size = args_input.batch_size
    else:
        raise ValueError(
            "Batch Size value cannot be null and has to be an integer")

    if args_input.model:
        model = args_input.model
    else:
        raise ValueError("Model selection must not be empty")

    if args_input.stopCount:
        stop_counter = args_input.stopCount
    else:
        raise ValueError("StopCount have to be an int")

    input_dir = '/work/cse496dl/shared/homework/01'
    #Make output model dir
    if os.path.exists(model_dir) == False:
        os.mkdir(model_dir)

    #Load Data
    train_images, train_labels, test_images, test_labels, val_images, val_labels = util.load_data(
        input_dir)
    x = tf.placeholder(tf.float32, [None, 784], name='input_placeholder')
    y = tf.placeholder(tf.float32, [None, 10], name='labels')

    #Specify Model
    if (str(model) == '1'):
        _, outputLayer = initiate_basic_model(x)
    elif (str(model) == '2'):
        _, outputLayer = initiate_better_model(x)

    #Run Training with early stopping and save output
    counter = stop_counter
    prev_winner = 0
    curr_winner = 0
    optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
    cross_entropy = util.cross_entropy_op(y, outputLayer)
    global_step_tensor = util.global_step_tensor('global_step_tensor')
    train_op = util.train_op(cross_entropy, global_step_tensor, optimizer)
    conf_matrix = util.confusion_matrix_op(y, outputLayer, 10)
    saver = tf.train.Saver()
    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        for i in range(10):
            print("KFold : " + str(i))
            counter = stop_counter
            for epoch in range(epochs):
                if counter > 0:
                    print("Epoch : " + str(epoch))
                    util.training(batch_size, x, y, train_images[i],
                                  train_labels[i], session, train_op,
                                  conf_matrix, 10)
                    accuracy = util.validation(batch_size, x, y, val_images[i],
                                               val_labels[i], session,
                                               cross_entropy, conf_matrix, 10)
                    if epoch == 0:
                        prev_winner = accuracy
                    else:
                        curr_winner = accuracy
                        if (curr_winner > prev_winner) and (counter > 0):
                            prev_winner = curr_winner
                        else:
                            counter -= 1

                    test_accuracy = util.test(batch_size, x, y, test_images[i],
                                              test_labels[i], session,
                                              cross_entropy, conf_matrix, 10)
                    #Calculate the confidence interval
                    value1, value2 = util.confidence_interval(
                        test_accuracy, 1.96, test_images[i].shape[0])
                    print("Confidence Interval : " + str(value1) + " , " +
                          str(value2))
                else:
                    break
            print("Saving.......")
            saver.save(session, os.path.join("./homework_1/", "homework_1"))