Exemplo n.º 1
0
def self_model():
    feature_vocab = _build_feature_vocab(Option.src)
    from perm import TreeParamPermModel as PM
    pm = PM(feature_vocab, Option)
    logger.info('[Train] Loading the source language...:%s' % Option.src)
    Global.mx_dep = Option.mx_dep_train
    data_train = Data(Option.src, conll_reader, valid=lambda x: len(x) < Option.mx_len)
    logger.info('Training...')
    fit(pm, {'data': data_train, 'mx_sent': Option.mx_sent, 'batch_size': Option.batch_size},
        nb_epoch=Option.mx_epoch, callbacks=_callbacks(model=''))
    save(fn=Option.model, model={'model': pm.state_dict(), 'feature_vocab': feature_vocab})
Exemplo n.º 2
0
    def train(self):
        # collect training data
        cls_num = len(self.gestures)
        array=0
        for n in range(int(cls_num * self.session_num)):
            label = self.gestures[n % cls_num]
            for k in range(self.training_unit):
                self.training_data[1+array][0] = self.label_encoder.transform([label])[0]
                array+=1
        # start training
        X = self.training_data[1:, 1:]  # the first row is fake data
        Y = self.training_data[1:, 0].reshape(-1, 1)  # the first row is fake data
        self.scaler = StandardScaler().fit(X)  # normalize X
        X = self.scaler.transform(X)

        self.clf, tr_acc = util.fit(X, Y, model=self.model)

        #gui.AlertUI(msg="Training accuracy: {}".format(tr_acc))
        self.accuracy="Training accuracy: {}".format(tr_acc)
        print(self.accuracy)
        if self.model == "SVM":
            model_dict = {
                "emg": self.emg_data[1:, :],
                "X": X,
                "Y": Y,
                "scaler": self.scaler,
                "label_enc": self.label_encoder,
                "clf": self.clf,
            }

        path = "{}/model-{}.model".format(
            PATH_PREFIX, self.person_id)
        f = open(path, "wb+")
        f.write(pickle.dumps(model_dict))
Exemplo n.º 3
0
def guillotine(W, H, N, rectangles):
    rectangles = u.merge_sort(rectangles)

    if (N < 1):
        g.set_draws(W, H, rectangles)
        g.draw()
        return

    aux = rectangles[0]

    aux.x = 0
    aux.y = 0
    aux.xx = aux.x + aux.w
    aux.yy = aux.y + aux.h
    actualx = aux
    actualy = aux

    cutted = []
    noncutted = []
    cutted.append(aux)

    for i in range(1, len(rectangles)):

        cut, rectangles[i] = u.fit(rectangles[i], actualx, actualy, W, H)
        if (cut == 1):
            rectangles[i].x = actualx.xx
            rectangles[i].y = actualy.y
            rectangles[i].xx = rectangles[i].w + rectangles[i].x
            rectangles[i].yy = rectangles[i].h + rectangles[i].y
            actualx = rectangles[i]
            cutted.append(rectangles[i])
        elif (cut == 2):
            rectangles[i].x = aux.x
            rectangles[i].y = actualy.yy
            rectangles[i].xx = rectangles[i].w + rectangles[i].x
            rectangles[i].yy = rectangles[i].h + rectangles[i].y
            actualy = rectangles[i]
            actualx = rectangles[i]
            cutted.append(rectangles[i])
        elif (cut == 3):
            noncutted.append(rectangles[i])
            print("La pieza ", rectangles[i].label, " no ha sido cortada")

    for i in range(len(rectangles)):
        print(rectangles[i].label, rectangles[i].orientation)

    for i in range(len(noncutted)):
        print(noncutted[i].label)

    waste, area = uc.waste(W, H, noncutted, 1)
    do.results(1, waste, area, len(cutted), cutted)
    g.set_draws(1, W, H, cutted)
    g.draw()
Exemplo n.º 4
0
def permute():
    if not Option.model:
        logger.info('[Warning] No model file will be saved since --model isn\'t specified!')
    logger.info('[Target] Loading the target language...:%s' % Option.tgt)
    tgt_data = Data(Option.tgt, conll_reader if Option.tgt.endswith('.conllu') else text_reader)
    lm_tgt = _load_lm('Target', tgt_data)
    from perm import UParamPermModel as PM
    if Option.pretrain:
        logger.info('Loading the pretrained model...:%s' % Option.pretrain)
        ptr_pm = load(Option.pretrain)
        feature_vocab = ptr_pm['feature_vocab']
        pm = PM(feature_vocab, Option, lm_tgt, smoother=lm_tgt.smoother, lambdap=lm_tgt.lambdap,
                vocab_size=lm_tgt.vocab_size)
        pm.load_state_dict(ptr_pm['model'])
    else:
        feature_vocab = _build_feature_vocab(Option.src)
        pm = PM(feature_vocab, Option, lm_tgt, smoother=lm_tgt.smoother, lambdap=lm_tgt.lambdap,
                vocab_size=lm_tgt.vocab_size)

    logger.info('[Train_before] Loading the source language...:%s' % Option.src)
    Global.mx_dep = Option.mx_dep_train
    Global.feature_vocab = feature_vocab
    data_train = Data(Option.src, conll_reader, valid=lambda x: len(x) < Option.mx_len)
    lm_src_train = _load_lm('Train', pm.filter(data_train))
    logger.info('[Train_before] Objective: %f' % pm.skewD(lm_tgt, lm_src_train))
    logger.info('Training...')
    fit(pm, {'data': data_train, 'mx_itr': Option.mx_itr, 'batch_size': Option.batch_size},
        nb_epoch=Option.mx_epoch, callbacks=_callbacks())
    save_model(Option.model, Option.to_dict(), Global.to_dict())

    Global.mx_dep = Option.mx_dep
    logger.info('[Test_before] Loading the source language...:%s' % Option.src)
    data_test = Data(Option.src, conll_reader)
    lm_data_test = _load_lm('Test_before', data_test)
    logger.info('[Test_before] Skew-Divergence: %f' % pm.skewD(lm_tgt, lm_data_test))
    logger.info('[Test] Permuting&writing...:%s' % Option.output)
    write_conll(Option.output, pm.permute(data_test))
    lm_data_test_out = _load_lm('Test_after', Data(Option.output, conll_reader))
    logger.info('[Test_after] Skew-Divergence: %f' % pm.skewD(lm_tgt, lm_data_test_out))
Exemplo n.º 5
0
    def params_changed(self):
        # print(self.p.min(), self.p.max())

        self.s = util.fit(self.s_slider.value(), 0, self.sliders_positions,
                          self.s_min, self.s_max)
        self.r = util.fit(self.r_slider.value(), 0, self.sliders_positions,
                          self.r_min, self.r_max)
        self.b = util.fit(self.b_slider.value(), 0, self.sliders_positions,
                          self.b_min, self.b_max)
        print(self.dt_slider.value(), '$$$$$$')
        self.dt = util.fit(self.dt_slider.value(), 0, self.sliders_positions,
                           self.dt_min, self.dt_max)

        lorenz.lorenz(self.p, self.s, self.r, self.b, self.steps, self.dt)

        # self.main_scatter_plot.setData(pos=self.p, size=np.ones(self.p.shape[0])*0.3, color=self.color, pxMode=False)
        self.main_scatter_plot.setData(pos=self.p,
                                       size=0.3,
                                       color=self.color,
                                       pxMode=False)

        self.xcurve.setData(self.p[:, 0], connect='finite')
        self.ycurve.setData(self.p[:, 1], connect='finite')
        self.zcurve.setData(self.p[:, 2], connect='finite')

        # print(self.steps, self.dt, f'min = {np.min(self.p)} max = {np.max(self.p)}')
        # self.xplot.setYRange(np.min(self.p[:, 0]), np.max(self.p[:, 0]))
        # self.yplot.setYRange(np.min(self.p[:, 1]), np.max(self.p[:, 0]))
        # self.zplot.setYRange(np.min(self.p[:, 2]), np.max(self.p[:, 1]))

        print(self.dt, '<<<<')
        # print(self.steps)
        self.steps_label.setText(f'steps {self.steps}')
        self.dt_label.setText(f'dt {self.dt}')
        self.s_label.setText(f'σ {self.s}')
        self.r_label.setText(f'ρ {self.r}')
        self.b_label.setText(f'β {self.b}')
Exemplo n.º 6
0
                #pick 14 indexes at random from 0 to 29
                #cast to set to avoid repetition
                indeces = rd(14)
                L = length(indeces)
                #since I use points i and i+1 i need the length of the index list to be a multiple of 2
                #if the list length is odd, the last element is ignored

                #initialize scores and losses tensors
                scores = torch.zeros(1, L // 2)
                loss = torch.zeros(1, L // 2)
                for i in range(0, L, 2):
                    x1, y1, x2, y2 = x[indeces[i]], y[indeces[i]], x[indeces[
                        i + 1]], y[indeces[i + 1]]
                    #fit a line to the two points
                    m, q = fit(x1, x2, y1, y2)
                    #now "count" the inliers
                    #number_inliers = sum(inliers) would be a very valid ransac score
                    #in this case i just get a vector of ones and zeroes and let the net regress a score from it
                    inliers = torch.FloatTensor(
                        [m * x[a] + q - y[a] == 0 for a in range(30)])
                    #now the score, which is going to be some function of the inliers
                    scores[0][i // 2] = net(inliers)
                    #now calculate the loss (quadratic loss)
                    loss[0][i // 2] = (m - gm)**2 + (q - gq)**2

                #finally calculate the expected loss of this example
                scores_n = torch.softmax(scores[0, :], dim=0)
                exp_loss = loss[0, :].dot(scores_n)
                #add up losses of the batch
                LOSS += exp_loss
Exemplo n.º 7
0
import torch
import torch.nn as nn
import torch.utils.data as tud
import torch.optim as optim
import util
import model

BATCH_SIZE = 32
EPOCHS = 10
LEARNING_RATE = 0.001

train_dataset, test_dataset = util.load_data()

train_loader = tud.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
test_loader = tud.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)

model = model.CNN()
print('[main]: ',model)

optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
error = nn.CrossEntropyLoss()

util.fit(model, train_loader=train_loader,test_loader=test_loader, epochs=EPOCHS, batch_size=BATCH_SIZE, error=error, optimizer=optimizer)
#util.save_model(model, 'model_b_32_e_10')
Exemplo n.º 8
0
Arquivo: mine.py Projeto: DejavuITA/A6
#print(sqrt((0.00005*0.5/0.025)**2 + (0.008*0.001/0.025)**2 + (0.008*0.5/0.025**2*0.001)**2))

Vs = unumpy.uarray([0.001, 0.002, 0.003, 0.004], [0.00003, 0.00003, 0.00003, 0.00003])

V = ufloat(0.01, 0.0003)
C = Vs * C_figlia / V
print(C)

# Assorbanze
A = [m16.A[n_max], m32.A[n_max], m48.A[n_max], m64.A[n_max]]

# Fit
def retta(x, m):
    return m*x

print util.fit(unumpy.nominal_values(C), A, 11.6*unumpy.std_devs(C))
m, cov = scipy.optimize.curve_fit(retta, unumpy.nominal_values(C), A, sigma=(11.6*unumpy.std_devs(C))**-2)
print(m, cov)

chi2 = util.chi2_retta(m, 0, unumpy.nominal_values(C), A, 11.6*unumpy.std_devs(C))
print "chi2:", chi2

j = sqrt(chi2 / 3)
print j

old_C = C
u = np.sqrt((11.6*unumpy.std_devs(C)*j)**2 - (11.6*unumpy.std_devs(C))**2)
print u
C = unumpy.uarray( unumpy.nominal_values(C), unumpy.std_devs(C)*j)

m, cov = scipy.optimize.curve_fit(retta, unumpy.nominal_values(C), A, sigma=(11.6*unumpy.std_devs(C))**-2)
Exemplo n.º 9
0
    def init_ui(self):
        # pg.setConfigOption('background', 'w')
        # pg.setConfigOption('imageAxisOrder', 'row-major')

        pg.setConfigOption('background', 'w')
        pg.setConfigOption('foreground', 'k')

        self.setWindowTitle('Lorenz Attractor')
        # self.win = pg.GraphicsWindow(title='A 2d plot window')

        self.w = gl.GLViewWidget()
        self.w.opts['distance'] = 100
        # self.w.opts['viewport'] = (0, 0, 400, 400)
        # self.w.setWindowTitle('pyqtgraph example: GLLine`em')
        # self.w.setGeometry(0, 110, 700, 700)
        # self.w.setMaximumHeight(100)
        grid_shift = 100

        grid_spacing = 25

        gx = gl.GLGridItem()
        gx.setSize(grid_shift, grid_shift, grid_shift)
        gx.rotate(90, 0, 1, 0)
        gx.translate(-grid_shift / 2, 0, grid_shift / 2)
        gx.setSpacing(grid_spacing, grid_spacing, grid_spacing)
        self.w.addItem(gx)
        gy = gl.GLGridItem()
        gy.setSize(grid_shift, grid_shift, grid_shift)
        gy.rotate(90, 1, 0, 0)
        gy.translate(0, -grid_shift / 2, grid_shift / 2)
        gy.setSpacing(grid_spacing, grid_spacing, grid_spacing)
        self.w.addItem(gy)
        gz = gl.GLGridItem()
        gz.setSize(grid_shift, grid_shift, grid_shift)
        gz.setSpacing(grid_spacing, grid_spacing, grid_spacing)

        # gz.translate(0, 0, -grid_shift/2)
        self.w.addItem(gz)

        # self.color = (1, 0, 0, 1)

        self.main_scatter_plot = gl.GLScatterPlotItem()
        self.w.addItem(self.main_scatter_plot)

        projections_height = 80
        projections_width = 300

        self.xplot = pg.PlotWidget()
        self.xplot.showGrid(x=True, y=True, alpha=0.1)
        # self.xplot.enableAutoRange()
        self.xcurve = self.xplot.plot(pen='b')
        self.xplot.setFixedSize(projections_width, projections_height)

        self.yplot = pg.PlotWidget()
        self.yplot.showGrid(x=True, y=True, alpha=0.1)
        # self.yplot.enableAutoRange()
        self.ycurve = self.yplot.plot(pen='b')
        self.yplot.setFixedSize(projections_width, projections_height)

        self.zplot = pg.PlotWidget()
        self.zplot.showGrid(x=True, y=True, alpha=0.1)
        # self.zplot.enableAutoRange()
        self.zcurve = self.zplot.plot(pen='b')
        self.zplot.setFixedSize(projections_width, projections_height)

        self.projections_1d_layout = QtGui.QVBoxLayout()

        # layoutgb = QtGui.QGridLayout()
        self.layout = QtGui.QHBoxLayout()
        self.right_layout = QtGui.QVBoxLayout()
        self.left_layout = QtGui.QVBoxLayout()

        self.steps_label = QtGui.QLabel()
        self.dt_label = QtGui.QLabel(str(self.dt))
        self.s_label = QtGui.QLabel()
        self.r_label = QtGui.QLabel()
        self.b_label = QtGui.QLabel()

        self.sliders_positions = 2000

        self.s_label.setStyleSheet('background-color: rgba(255, 0, 0, 0.2)')

        self.steps_slider = QtGui.QSlider(orientation=QtCore.Qt.Horizontal)
        self.steps_slider.setValue(self.steps)
        self.steps_slider.setRange(self.steps_min, self.steps_max)
        self.steps_slider.setTickInterval(1000)

        self.dt_slider = QtGui.QSlider(orientation=QtCore.Qt.Horizontal)
        print(
            int(
                util.fit(self.dt, self.dt_min, self.dt_max, 0,
                         self.sliders_positions)))
        self.dt_slider.setValue(
            int(
                util.fit(self.dt, self.dt_min, self.dt_max, 0,
                         self.sliders_positions)))
        self.dt_slider.setRange(0, self.sliders_positions)

        self.s_slider = QtGui.QSlider(orientation=QtCore.Qt.Horizontal)
        self.s_slider.setRange(0, self.sliders_positions)
        self.s_slider.setValue(
            util.fit(self.s, self.s_min, self.s_max, 0,
                     self.sliders_positions))
        # self.s_slider.setTickPosition(QtGui.QSlider.TicksBelow)
        # self.s_slider.setTickInterval(0.1)

        self.r_slider = QtGui.QSlider(orientation=QtCore.Qt.Horizontal)
        self.r_slider.setRange(0, self.sliders_positions)
        self.r_slider.setValue(
            util.fit(self.r, self.r_min, self.r_max, 0,
                     self.sliders_positions))
        # self.r_slider.setTickInterval(0.1)

        self.b_slider = QtGui.QSlider(orientation=QtCore.Qt.Horizontal)
        self.b_slider.setRange(0, self.sliders_positions)
        self.b_slider.setValue(
            util.fit(self.b, self.b_min, self.b_max, 0,
                     self.sliders_positions))
        # self.b_slider.setTickInterval(0.01)

        self.color = (1, 0.7, 0.4, 1)
        # self.color = np.array([
        #     (1*x, 0.2+0.5*x, 0.1+0.3*x, 1)
        #     for x in np.linspace(0, 1, self.steps)
        # ])

        self.lambda_label = QtGui.QLabel()
        self.calc_lambdas_button = QtGui.QPushButton('calc lambdas')

        # pos = self.p, size = np.ones(self.p.shape[0]) * 0.3, color = self.color, pxMode = False

        sliders_width = 300
        self.steps_slider.setFixedWidth(sliders_width)
        self.dt_slider.setFixedWidth(sliders_width)
        self.s_slider.setFixedWidth(sliders_width)
        self.r_slider.setFixedWidth(sliders_width)
        self.b_slider.setFixedWidth(sliders_width)

        self.right_layout.addWidget(self.steps_slider)
        self.right_layout.addWidget(self.steps_label)
        self.right_layout.addWidget(self.dt_slider)
        self.right_layout.addWidget(self.dt_label)
        self.right_layout.addWidget(self.s_label)
        self.right_layout.addWidget(self.s_slider)
        self.right_layout.addWidget(self.r_label)
        self.right_layout.addWidget(self.r_slider)
        self.right_layout.addWidget(self.b_label)
        self.right_layout.addWidget(self.b_slider)
        self.right_layout.addWidget(self.lambda_label)
        self.right_layout.addWidget(self.calc_lambdas_button)

        self.right_layout.addWidget(self.xplot)
        self.right_layout.addWidget(self.yplot)
        self.right_layout.addWidget(self.zplot)

        self.params_changed()
        self.left_layout.addWidget(self.w)
        self.left_layout.addLayout(self.projections_1d_layout, stretch=2)

        self.layout.addLayout(self.left_layout)
        self.layout.addLayout(self.right_layout)

        self.setLayout(self.layout)

        self.setGeometry(0, 0, 1440, 900)