Exemplo n.º 1
0
 def train(self, sess, X_train, Y_train, X_test, Y_test,num_epochs, num_count,logs):
     res = 0.0
     summary_writer = tf.summary.FileWriter(logs+'/train',sess.graph)
     summary_writer1 = tf.summary.FileWriter(logs+'/test',sess.graph)
     sess.run(self.init_op)
     datagen = util.get_generator()
     # 模型持久化器
     saver = tf.train.Saver()
     batch_size = 128
     print('batch_size:', batch_size)
     # 开始迭代
     for e in range(num_epochs):
         yieldData = Data(X_train,Y_train)
         print('Epoch', e)
         batches = 0
         if e != 0 and (e %(num_epochs-1) == 0 or e%20==0): #每迭代一定次数保存下模型
             saver.save(sess, logs+'/'+str(e)+'model')
         #使用原始数据进行迭代
         for i in range(1):
             for batch_X,batch_Y in yieldData.get_next_batch(batch_size):
                 _, lossval, scoreval = sess.run([self.train_op,self.loss, self.score],
                                                 feed_dict={self.X: batch_X, self.keep_prob:self.keep_prob_train, self.y:batch_Y,self.is_training:True})
         summary2, accuval, scoreval, lossval = sess.run([self.merged, self.accuracy_test, self.score,self.loss],
                                              feed_dict={self.X: X_test, self.keep_prob:1, self.y:Y_test,self.is_training:False})
         print("Test accuracy:", accuval)
         print("Test loss:",lossval)
     return 0
Exemplo n.º 2
0
 def train(self, sess, X_train, Y_train, X_test, Y_test, num_epoch=1000):
     sess.run(self.init_op)
     # 随机生成器需要fit总体样本数据
     datagen = util.get_generator()
     saver = tf.train.Saver()
     # 因为datagen的特殊需求(bacthsize需要能够整除训练集总个数,并且这里样本也少,直接全体当batchsize)
     split = 500
     batch_size = int(len(X_train) / split)  #取split使得尽量为200左右
     if len(
             X_train
     ) % split != 0:  #这里仅仅是因为图片生成那里要求batchsize需要能够和输入数据个数 整除 所以如此做以确保这一点
         remove = len(X_train) % split
         X_train = X_train[:-1 *
                           remove]  #如果后续数据多了大可以不必进行图片生成或者图片数据很多却依然做图片生成时则batch_size和这个可能需要再调整
         Y_train = Y_train[:-1 * remove]
     print('batch_size:', batch_size)
     for e in range(num_epoch):
         yieldData = Data(X_train, Y_train)
         print('Epoch', e)
         batches = 0
         if e != 0 and e % 5 == 0:
             saver.save(sess, 'savedmodel/' + str(e) + 'model')
         for x_batch, y_batch in datagen.flow(X_train,
                                              Y_train,
                                              batch_size=batch_size,
                                              save_to_dir=None):
             #print(x_batch[0])
             #print(y_batch[0])
             if batches % 100 == 0:
                 print('batch: ', batches)
                 '''训练集'''
                 accuval, scoreval1, scoreval2, scoreval3, scoreval4, scoreval5, scoreval6, scoreval7, lengthval, proval = sess.run(
                     [
                         self.accuracy, self.score1, self.score2,
                         self.score3, self.score4, self.score5, self.score6,
                         self.score7, self.length, self.probabi
                     ],
                     feed_dict={
                         self.X: x_batch,
                         self.keep_prob: 1,
                         self.y: y_batch
                     })
                 print("Train accuracy:", accuval)
                 if batches == split:
                     print('train')
                     predictions = self.makeprint(scoreval1, scoreval2,
                                                  scoreval3, scoreval4,
                                                  scoreval5, scoreval6,
                                                  scoreval7, lengthval,
                                                  proval)
                     a = sess.run(predictions)
                     print(a.shape)
                     print(a)
                     print(y_batch)
                 '''测试集'''
                 yieldTest = Data(X_test, Y_test)
                 tmp = 0
                 for b_test_x, b_test_y in yieldTest.get_next_batch(1000):
                     accuval, scoreval1, scoreval2, scoreval3, scoreval4, scoreval5, scoreval6, scoreval7, lengthval, proval = sess.run(
                         [
                             self.accuracy, self.score1, self.score2,
                             self.score3, self.score4, self.score5,
                             self.score6, self.score7, self.length,
                             self.probabi
                         ],
                         feed_dict={
                             self.X: b_test_x,
                             self.keep_prob: 1,
                             self.y: b_test_y
                         })
                     tmp = tmp + accuval
                     if batches == split:
                         print('test')
                         predictions = self.makeprint(
                             scoreval1, scoreval2, scoreval3, scoreval4,
                             scoreval5, scoreval6, scoreval7, lengthval,
                             proval)
                         a = sess.run(predictions)
                         #print(a.shape)
                         #print(a)
                         #print(b_test_y)
                 print("Test accuracy:", tmp / 5)
                 if batches == split:
                     batches = 0
                     break
             if batches <= split:
                 _, lossval = sess.run(
                     [self.train_op, self.loss],
                     feed_dict={
                         self.X: x_batch,
                         self.keep_prob: self.keep_prob_train,
                         self.y: y_batch
                     })
                 if batches % 25 == 0:
                     print("loss:", lossval)
             batches += 1
             #使用原始数据进行迭代
         for i in xrange(1):
             for batch_X, batch_Y in yieldData.get_next_batch(batch_size):
                 lossval, scoreval = sess.run(
                     [self.train_op, self.loss],
                     feed_dict={
                         self.X: batch_X,
                         self.keep_prob: self.keep_prob_train,
                         self.y: batch_Y
                     })
Exemplo n.º 3
0
 def train(self, sess, X_train, Y_train, X_test, Y_test, split, num_epoch,
           logs):
     sess.run(self.init_op)
     seq_len = self.score.shape[1].value
     print('seq_len:', seq_len)
     # 随机生成器需要fit总体样本数据
     datagen = util.get_generator()
     saver = tf.train.Saver()
     # 因为datagen的特殊需求(bacthsize需要能够整除训练集总个数,并且这里样本也少,直接全体当batchsize)
     batch_size = int(len(X_train) / split)  #取split使得尽量为200左右
     if len(
             X_train
     ) % split != 0:  #这里仅仅是因为图片生成那里要求batchsize需要能够和输入数据个数 整除 所以如此做以确保这一点
         remove = len(X_train) % split
         X_train = X_train[:-1 *
                           remove]  #如果后续数据多了大可以不必进行图片生成或者图片数据很多却依然做图片生成时则batch_size和这个可能需要再调整
         Y_train = Y_train[:-1 * remove]
     print('batch_size:', batch_size)
     tacc = 0
     for e in range(num_epoch):
         indices = list(
             range(len(Y_train))
         )  # indices = the number of images in the source data set
         np.random.shuffle(indices)
         X_train = X_train[indices]
         Y_train = Y_train[indices]
         yieldData = Data(X_train, Y_train)
         #更新lr
         k = sess.run([self.global_epoch_assign_op],
                      feed_dict={self.global_epoch_input: e})
         #lrnow = sess.run(self.lr)
         #lrnow = self.lr
         print('Epoch---------', e)
         batches = 0
         if e != 0 and e % 50 == 0:
             saver.save(sess,
                        logs + '/' + str(e) + '-' + str(tacc) + 'model')
         Y_test_sparse = self.sparse_tuple_from(Y_test)
         for x_batch, y_batch in datagen.flow(X_train,
                                              Y_train,
                                              batch_size=batch_size,
                                              save_to_dir=None):
             y_sparse = self.sparse_tuple_from(y_batch)
             if batches % (split - 1) == 0 and batches != 0:
                 '''训练集'''
                 denseval, costval = sess.run(
                     [self.dense_decoded, self.cost],
                     feed_dict={
                         self.X: x_batch,
                         self.keep_prob: 1,
                         self.y: y_sparse,
                         self.sequence_length:
                         np.ones(len(y_batch)) * seq_len,
                         self.is_training: False
                     })
                 print("Train cost:", costval)
                 print('denseval', denseval[0:10])
                 print('train_acc', self.calcacc(y_batch, denseval))
                 '''测试集'''
                 denseval, costval = sess.run(
                     [self.dense_decoded, self.cost],
                     feed_dict={
                         self.X: X_test,
                         self.keep_prob: 1,
                         self.y: Y_test_sparse,
                         self.sequence_length:
                         np.ones(len(Y_test)) * seq_len,
                         self.is_training: False
                     })
                 print("Test cost:", costval)
                 tacc = self.calcacc(Y_test, denseval)
                 print('test_acc', tacc)
             if batches <= split:
                 _, costval = sess.run(
                     [self.train_op, self.cost],
                     feed_dict={
                         self.X: x_batch,
                         self.keep_prob: 0.5,
                         self.y: y_sparse,
                         self.sequence_length:
                         np.ones(len(y_batch)) * seq_len,
                         self.is_training: True
                     })
                 if batches % (split - 1) == 0:
                     print("cost:", costval)
             batches += 1
             if batches == split + 1:
                 break
                 #使用原始数据进行迭代
         for i in range(1):
             for batch_X, batch_Y in yieldData.get_next_batch(batch_size):
                 y_sparse = self.sparse_tuple_from(batch_Y)
                 _, lossval = sess.run(
                     [self.train_op, self.loss],
                     feed_dict={
                         self.X: batch_X,
                         self.keep_prob: 0.5,
                         self.y: y_sparse,
                         self.sequence_length:
                         np.ones(len(batch_Y)) * seq_len,
                         self.is_training: True
                     })