Exemplo n.º 1
0
 def append_dmap(self, annos, container, length):
     k = util.get_key_hmap((length, length), annos, self.patch,
                           self.patch_l // 2)
     tmp, tmp_re = util.get_dir_hmap((length, length), annos, self.ones,
                                     self.limbs, self.patch_l // 2)
     d = util.weight_dir_hmap(k, tmp, tmp_re, self.limbs)
     container.append(d)
Exemplo n.º 2
0
    def next_batch(self):
        start = self.index
        end = self.index + self.batch_size
        if end >= self.volumn:
            end = self.volumn
            self.index = 0
        else:
            self.index = end

        data_batch = self.data[start:end]
        img = []
        keypoint_hmap = []
        direction_hmap = []
        for piece in data_batch:
            tmp = misc.imread(self.img_dir + piece['image_id'] + '.jpg')

            tmp, rate, left, top = \
              util.resize(tmp, self.length)
            annos = np.array(list(piece['keypoint_annotations'].values()),
                             dtype=np.float16)
            annos[:, ::3] = annos[:, ::3] * rate - left
            annos[:, 1::3] = annos[:, 1::3] * rate - top
            annos = annos.astype(np.int16)

            img.append(tmp)

            tmp = misc.imresize(tmp, (self.short, self.short))
            # annos = np.round(annos * self.short / self.length).astype(np.int8)
            rate = self.short / self.length
            annos[:, ::3] = annos[:, ::3] * rate
            annos[:, 1::3] = annos[:, 1::3] * rate
            annos = np.round(annos).astype(np.int8)
            # print(annos)

            kmap = util.get_key_hmap(\
              tmp.shape, annos, self.patch, self.patch_l//2)
            keypoint_hmap.append(kmap)

            tmp_dmap, tmp_dmap_re = util.get_dir_hmap(\
              tmp.shape, annos, self.ones, self.limbs, self.patch_l//2)

            dmap = util.weight_dir_hmap(kmap, tmp_dmap, tmp_dmap_re,
                                        self.limbs)

            # use forward only
            dmap = dmap[:, :, len(self.limbs) * 2:]

            direction_hmap.append(dmap)

        img = np.array(img, dtype=np.float32)
        img -= self.mean
        img /= self.var
        keypoint_hmap = np.array(keypoint_hmap, dtype=np.float32)
        direction_hmap = np.array(direction_hmap, dtype=np.float32)
        return img, keypoint_hmap, direction_hmap
Exemplo n.º 3
0
    def next_batch(self):
        start = self.index
        end = self.index + self.batch_size
        if end >= self.volumn:
            end = self.volumn
            self.index = 0
        else:
            self.index = end
        data_batch = self.data[start:end]
        img = []
        keypoint_hmap = []
        affinity_hmap = []
        names = []
        for piece in data_batch:
            tmp = misc.imread(self.img_dir + piece['image_id'] + '.jpg')
            names.append(piece['image_id'])

            tmp, rate, left, top = \
              util.resize(tmp, self.length)
            annos = np.array(list(piece['keypoint_annotations'].values()),
                             dtype=np.float16)
            annos[:, ::3] = annos[:, ::3] * rate - left
            annos[:, 1::3] = annos[:, 1::3] * rate - top
            annos = annos.astype(np.int16)
            img.append(tmp)

            tmp = misc.imresize(tmp, (self.short, self.short))
            rate = self.short / self.length
            annos[:, ::3] = annos[:, ::3] * rate
            annos[:, 1::3] = annos[:, 1::3] * rate
            annos = np.round(annos).astype(np.int8)

            keypoint_hmap.append(
                util.get_key_hmap(tmp.shape,
                                  annos,
                                  self.patch,
                                  self.patch_l // 2,
                                  strict=True))
            affinity_hmap.append(
                util.get_aff_hmap(tmp.shape, annos, self.limbs, strict=True))

        img = np.array(img, dtype=np.float32)
        img -= self.mean
        img /= self.var
        keypoint_hmap = np.array(keypoint_hmap, dtype=np.float32)
        affinity_hmap = np.array(affinity_hmap, dtype=np.float32)
        return img, keypoint_hmap, affinity_hmap, names
Exemplo n.º 4
0
    def next_batch(self):
        start = self.index
        end = self.index + self.batch_size
        if end >= self.volumn:
            end = self.volumn
            self.index = 0
        else:
            self.index = end

        data_batch = self.data[start:end]
        img = []
        keypoint_hmap = []
        direction_hmap = []
        names = []
        lables = []
        link_kmaps = []
        for piece in data_batch:
            tmp = misc.imread(self.img_dir + piece['image_id'] + '.jpg')
            names.append(piece['image_id'])

            # resize the img and annotation to 368x368
            tmp, rate, left, top = \
              util.resize(tmp, self.length)
            annos = np.array(list(piece['keypoint_annotations'].values()),
                             dtype=np.float16)
            annos[:, ::3] = annos[:, ::3] * rate - left
            annos[:, 1::3] = annos[:, 1::3] * rate - top
            annos = annos.astype(np.int16)

            img.append(tmp)

            # resize the img and annotations to 46x46
            tmp = misc.imresize(tmp, (self.short, self.short))
            rate = self.short / self.length
            annos[:, ::3] = annos[:, ::3] * rate
            annos[:, 1::3] = annos[:, 1::3] * rate
            annos = np.round(annos).astype(np.int8)

            kmap = util.get_key_hmap(\
              tmp.shape, annos, self.patch, self.patch_l//2)
            keypoint_hmap.append(kmap)

            human_num = len(annos)
            failed = True
            # since many img contains only one people, we manually
            # reduce the possibility to get the positive sample

            random.shuffle(self.limb_index)
            if np.random.random_sample() < 0.15 or human_num == 1:
                # extract from the same people
                for limb in self.limb_index:
                    start = self.limbs[limb][0]
                    end = self.limbs[limb][1]
                    human = annos[np.random.randint(human_num)]
                    start_x = human[start * 3]
                    start_y = human[start * 3 + 1]
                    start_v = human[start * 3 + 2]
                    end_x = human[end * 3]
                    end_y = human[end * 3 + 1]
                    end_v = human[end * 3 + 2]
                    if util.validate(start_x, start_y, start_v, self.short, self.short) \
                      and util.validate(end_x, end_y, end_v, self.short, self.short):

                        kmap_start = util.get_single_kmap(
                            (self.short, self.short), start_x, start_y,
                            self.patch_l // 2, self.patch)
                        kmap_end = util.get_single_kmap(
                            (self.short, self.short), end_x, end_y,
                            self.patch_l // 2, self.patch)
                        link_kmaps.append(
                            np.stack((kmap_start, kmap_end), axis=-1))
                        failed = False
                        break
                if failed:
                    link_kmaps.append(np.zeros((self.short, self.short, 2)))
                    print('no validate limb in %s (same)' % piece['image_id'])

                lables.append(1)

            else:
                # extract from two different humen
                for limb in self.limb_index:
                    start = self.limbs[limb][0]
                    end = self.limbs[limb][1]

                    index1 = np.random.randint(human_num)
                    human1 = annos[index1]
                    start_x = human1[start * 3]
                    start_y = human1[start * 3 + 1]
                    start_v = human1[start * 3 + 2]

                    index2 = np.random.randint(human_num)
                    human2 = annos[index2]
                    end_x = human2[end * 3]
                    end_y = human2[end * 3 + 1]
                    end_v = human2[end * 3 + 2]

                    if util.validate(start_x, start_y, start_v, self.short, self.short) \
                      and util.validate(end_x, end_y, end_v, self.short, self.short) \
                      and index1 != index2:

                        kmap_start = util.get_single_kmap(
                            (self.short, self.short), start_x, start_y,
                            self.patch_l // 2, self.patch)
                        kmap_end = util.get_single_kmap(
                            (self.short, self.short), end_x, end_y,
                            self.patch_l // 2, self.patch)
                        link_kmaps.append(
                            np.stack((kmap_start, kmap_end), axis=-1))
                        lables.append(0)
                        failed = False
                        break
                if failed:
                    link_kmaps.append(np.zeros((self.short, self.short, 2)))
                    print('no validate limb in %s (differen)' %
                          piece['image_id'])

                lables.append(0)

            tmp_dmap, tmp_dmap_re = util.get_dir_hmap(\
              tmp.shape, annos, self.ones, self.limbs, self.patch_l//2)

            dmap = util.weight_dir_hmap(kmap, tmp_dmap, tmp_dmap_re,
                                        self.limbs)

            direction_hmap.append(dmap)

        img = np.array(img, dtype=np.float32)
        img -= self.mean
        img /= self.var
        keypoint_hmap = np.array(keypoint_hmap, dtype=np.float32)
        direction_hmap = np.array(direction_hmap, dtype=np.float32)
        lables = np.array(lables, dtype=np.float32)
        link_kmaps = np.array(link_kmaps, dtype=np.float32)

        return img, keypoint_hmap, direction_hmap, names, lables, link_kmaps
Exemplo n.º 5
0
    for k in range(14):
      if k in h.keys():
        tmp.append(int(round(h[k][0] / rate)))
        tmp.append(int(round(h[k][1] / rate)))
        tmp.append(1)
      else:
        tmp.append(0)
        tmp.append(0)
        tmp.append(0)
    ret['keypoint_annotations']['human%d'%(cnt+1)] = tmp
  return ret

if __name__ == '__main__':
  dmap = np.load('dmap.npy')
  kmap = util.get_kmap_from_dmap(dmap, util.get_limbs())
  humans = reconstruct(dmap, kmap, 5)
  annos = format(humans, 'sample', 0.05958549222797927461139896373057)
  # print(annos)

  for i in range(len(annos['keypoint_annotations'])):
    k_rev = util.get_key_hmap((772, 950), [annos['keypoint_annotations']['human%d'%(i+1)]], util.get_patch(40,32), r=20)
    src = misc.imread('ffa97d027dfc2f2fc62692a035535579c5be74e0.jpg')
    util.cover_key_map(src, k_rev)
    misc.imsave('vis_anno_%d.jpg'%i, src)
  
  # outstander, layer = find_outstander(kmap, 10)
  # print(layer)
  # print(outstander)


Exemplo n.º 6
0
    batch_k, batch_a = sess.run([kmaps, amaps], feed_dict={inflow: imgs})

    batch_k = batch_k[-1]
    batch_a = batch_a[-1]

    k = util.concat_maps(batch_k, lefts, tops, 8)
    a = util.concat_maps(batch_a, lefts, tops, 8)

    humans = inf_util_ka.reconstruct(a, k, 10)
    annos = inf_util_ka.format(humans, name.split('.')[0], rate)
    result.append(annos)

    if vis_anno:
        for human, ann in annos['keypoint_annotations'].items():
            k_rev = util.get_key_hmap((h, w), [ann],
                                      util.get_patch(40, 64),
                                      r=20)
            src = misc.imread(test_path + name)
            util.cover_key_map(src, k_rev)
            misc.imsave('%s_%s.jpg' % (annos['image_id'], human), src)

    if save:
        np.save(annos['image_id'] + '_k.npy', k)
        np.save(annos['image_id'] + '_a.npy', a)

    toc = time.time()

    cnt += 1
    interval = toc - tic
    elapse += interval
    if cnt == 2: