Exemplo n.º 1
0
    def log_prob(self, data, z, reuse=False):
        """Calculate log probability of model given data and latent variables.

    log p(x, z) = log p(x | z) + \sum_n^N p(z_n | z_{n + 1})
    """
        cfg = self.config
        distributions = {}
        p_z_L = dist.Normal(loc=np.zeros(cfg['z_dim'], cfg['dtype']),
                            scale=np.ones(cfg['z_dim'], dtype=cfg['dtype']),
                            validate_args=False)
        if not reuse:
            distributions['layer_%d' % (cfg['p/n_layers'] - 1)] = p_z_L
        log_p_z = 0.
        log_p_z += tf.reduce_sum(p_z_L.log_prob(z[-1]), -1)
        with util.get_or_create_scope('model', reuse=reuse):
            for n in range(cfg['p/n_layers'] - 1, 0, -1):
                p_z = self.build_stochastic_layer(n - 1,
                                                  layer_input=z[n],
                                                  reuse=reuse)
                if not reuse:
                    distributions['layer_%d' % (n - 1)] = p_z
                log_p_z += tf.reduce_sum(p_z.log_prob(z[n - 1]), -1)
            log_lik = tf.reduce_sum(
                self.likelihood(z[0]).log_prob(data), [2, 3, 4])
        if not reuse:
            self.distributions = distributions
        return log_lik + log_p_z
Exemplo n.º 2
0
 def likelihood(self, z, reuse=False):
     """Build likelihood p(x | z_0). """
     cfg = self.config
     n_samples = z.get_shape().as_list()[0]
     with util.get_or_create_scope('model', reuse=reuse):
         n_out = int(np.prod(cfg['train_data/shape']))
         net = z
         with slim.arg_scope(
             [slim.fully_connected],
                 activation_fn=util.get_activation(cfg['p_net/activation']),
                 outputs_collections=[tf.GraphKeys.ACTIVATIONS],
                 variables_collections=['model'],
                 weights_initializer=layers.variance_scaling_initializer(
                     factor=np.square(cfg['p_net/init_w_stddev']))):
             for i in range(cfg['p_net/n_layers']):
                 net = slim.fully_connected(net,
                                            cfg['p_net/hidden_size'],
                                            scope='fc%d' % i)
             logits = slim.fully_connected(net,
                                           n_out,
                                           activation_fn=None,
                                           scope='fc_lik')
     logits = tf.reshape(logits, [n_samples, cfg['batch_size']] +
                         cfg['train_data/shape'])
     return dist.Bernoulli(logits=logits, validate_args=False)
 def sample(self, data, n_samples, reuse=False):
     """Sample from the model."""
     cfg = self.config
     data_centered = data['input_data'] - tf.expand_dims(
         data['data_mean'], 0)
     with util.get_or_create_scope('variational', reuse=reuse):
         distributions = {}
         q_h, h = [], []
         data_centered = tf.reshape(data_centered, [cfg['batch_size'], -1])
         data_stacked = tf.stack([data_centered] * n_samples)
         q_h_0, h_0 = self.layer_q_and_h(0, data_stacked, reuse=reuse)
         q_h.append(q_h_0)
         distributions['layer_%d' % 0] = q_h_0
         h.append(h_0)
         for n in range(1, cfg['p/n_layers']):
             q_h_n, h_n = self.layer_q_and_h(n, h[n - 1])
             distributions['layer_%d' % n] = q_h_n
             q_h.append(q_h_n)
             h.append(h_n)
         if not reuse:
             self.q_h = q_h
             self.h = h
             self.distributions = distributions
         else:
             self.q_h_reuse = q_h
             self.h_reuse = h
             self.distributions_reuse = distributions
         return h
Exemplo n.º 4
0
 def sample(self, x, n_samples=1, reuse=False):
     """Draw a sample from the posterior z ~ q(z | x)."""
     cfg = self.config
     with util.get_or_create_scope('variational', reuse=reuse):
         q_z, z = [], []
         q_z_0 = self.build_stochastic_layer(n=0,
                                             layer_input=x,
                                             reuse=reuse)
         if not reuse:
             distributions = {}
             distributions['layer_0'] = q_z_0
         z_0 = q_z_0.sample(n_samples)
         q_z.append(q_z_0)
         z.append(z_0)
         for n in range(1, cfg['p/n_layers']):
             q_z_n = self.build_stochastic_layer(n=n,
                                                 layer_input=z[n - 1],
                                                 reuse=reuse)
             if not reuse:
                 distributions['layer_%d' % n] = q_z_n
             z_n = q_z_n.sample()
             q_z.append(q_z_n)
             z.append(z_n)
         if not reuse:
             self.distributions = distributions
         self.q_z = q_z
         self.z = z
         return z
Exemplo n.º 5
0
    def log_prob(self, data, h, reuse=False):
        """Log joint of the model.
    log f(x, h) = log p(x | h) + \sum_{i} log p(h_i | h_{i + 1})
    """
        cfg = self.config
        n_samples = h[0].get_shape().as_list()[0]
        distributions = {}
        kwargs = {}
        if cfg['p/w_eps'] != 0.:
            kwargs.update({
                'weights_initializer':
                tf.constant_initializer(cfg['p/w_eps'])
            })
        with util.get_or_create_scope('model', reuse=reuse):
            with slim.arg_scope([slim.fully_connected], **kwargs):
                if cfg['p/learn_prior']:
                    a = tf.get_variable('prior_logits',
                                        shape=cfg['p/h_dim'],
                                        dtype=cfg['dtype'],
                                        initializer=tf.constant_initializer(
                                            scipy.special.logit(
                                                cfg['p/bernoulli_p'])))
                else:
                    a = tf.constant(
                        (np.zeros(cfg['p/h_dim'], dtype=cfg['dtype']) +
                         scipy.special.logit(cfg['p/bernoulli_p'])))

                p_h_L = dist.Bernoulli(logits=a,
                                       name='p_h_%d' % (cfg['p/n_layers'] - 1),
                                       validate_args=False)
                distributions['layer_%d' % (cfg['p/n_layers'] - 1)] = p_h_L
                log_p_h_L = p_h_L.log_prob(h[-1])
                log_p_h = tf.reduce_sum(log_p_h_L, -1)
                for n in range(cfg['p/n_layers'] - 1, 0, -1):
                    p_h_n = self.build_stochastic_layer(n=n, h_above=h[n])
                    distributions['layer_%d' % (n - 1)] = p_h_n
                    log_p_h_n = tf.reduce_sum(p_h_n.log_prob(h[n - 1]), -1)
                    log_p_h += log_p_h_n
                p_x_given_h = self.likelihood(h[0])
                log_p_x_given_h = tf.reduce_sum(
                    p_x_given_h.log_prob(data['input_data']), [2, 3, 4])
                log_p_x_h = log_p_x_given_h + log_p_h
                if not reuse:
                    for name, p in distributions.items():
                        tf.summary.scalar(name + '_probs',
                                          tf.reduce_mean(p.probs))
                    tf.summary.scalar('likelihood' + '_probs',
                                      tf.reduce_mean(p_x_given_h.probs))
                    self.p_h_L = p_h_L
                    self.distributions = distributions
        return log_p_x_h
Exemplo n.º 6
0
 def prior_predictive(self):
     """Sample from the prior and pass it through the layers."""
     cfg = self.config
     n = cfg['batch_size'] * cfg['q/n_samples']
     n_samples = cfg['q/n_samples']
     with util.get_or_create_scope('model', reuse=True):
         h_prior = tf.cast(self.p_h_L.sample(n), cfg['dtype'])
         h_prior = tf.reshape(h_prior,
                              [cfg['q/n_samples'], cfg['batch_size'], -1])
         h = [None] * cfg['p/n_layers']
         h[cfg['p/n_layers'] - 1] = h_prior
         for n in range(cfg['p/n_layers'] - 1, 0, -1):
             p_h_n = self.build_stochastic_layer(n, h_above=h[n])
             h[n - 1] = tf.cast(p_h_n.sample(), cfg['dtype'])
         return self.likelihood(h[0])
Exemplo n.º 7
0
 def prior_predictive(self, reuse=True):
     """Sample from the prior predictive distribution."""
     cfg = self.config
     n_samples = cfg['q/n_samples'] * cfg['batch_size']
     with util.get_or_create_scope('model', reuse=reuse):
         z_L = tf.random_normal(
             [n_samples, cfg['batch_size'], cfg['z_dim']],
             dtype=cfg['dtype'])
         z = [None] * cfg['p/n_layers']
         z[cfg['p/n_layers'] - 1] = z_L
         for n in range(cfg['p/n_layers'] - 1, 0, -1):
             p_n = self.build_stochastic_layer(n - 1,
                                               layer_input=z[n],
                                               reuse=reuse)
             z_n = p_n.sample()
             z[n - 1] = z_n
     return self.likelihood(z[0], reuse=reuse)
Exemplo n.º 8
0
 def likelihood(self, h_0, reuse=False):
     """Log likelihood of the data."""
     cfg = self.config
     n_samples = h_0.get_shape().as_list()[0]
     with util.get_or_create_scope('model', reuse=reuse):
         h_0 = tf.reshape(h_0,
                          [n_samples * cfg['batch_size'], cfg['p/h_dim']])
         n_out = np.prod(cfg['train_data/shape']).tolist()
         p_logits = slim.fully_connected(h_0,
                                         n_out,
                                         activation_fn=None,
                                         scope='fc0')
         out_shape = ([n_samples, cfg['batch_size']] +
                      cfg['train_data/shape'])
         p_logits = tf.reshape(p_logits, out_shape)
         p_x_given_h = dist.Bernoulli(logits=p_logits, name='p_x_given_h_0')
         return p_x_given_h
Exemplo n.º 9
0
 def build_stochastic_layer(self, n, layer_input, reuse=False):
     """Build the distribution for a layer of the model, q(z_n | z_{n - 1})."""
     cfg = self.config
     in_shape = layer_input.get_shape().as_list()
     if len(in_shape) == 4:
         n_samples = 1
     else:
         n_samples = in_shape[0]
     if n == 0:  # first layer is the data
         outer_dim = -1
     else:
         outer_dim = cfg['z_dim']
     flat_shape = [n_samples * cfg['batch_size'], outer_dim]
     net = tf.reshape(layer_input, flat_shape)
     layer_dim = 2 * cfg['z_dim']
     w_shape = [layer_input.get_shape().as_list()[-1], layer_dim]
     with util.get_or_create_scope('variational', reuse):
         with slim.arg_scope(
             [slim.fully_connected],
                 outputs_collections=[tf.GraphKeys.ACTIVATIONS],
                 variables_collections=['variational'],
                 weights_initializer=util.get_initializer(
                     cfg['q_net/weights_initializer']),
                 activation_fn=util.get_activation(cfg['q_net/activation']),
                 biases_initializer=tf.constant_initializer(0.1)):
             for i in range(cfg['q_net/n_layers']):
                 net = slim.fully_connected(net,
                                            cfg['q_net/hidden_size'],
                                            scope='layer_%d_fc%d' % (n, i))
             net = slim.fully_connected(net,
                                        2 * cfg['z_dim'],
                                        activation_fn=None,
                                        scope='layer_%d_fc_out' % n)
         if n == 0:
             net = tf.reshape(net, [cfg['batch_size'], 2 * cfg['z_dim']])
             mu = net[:, 0:cfg['z_dim']]
             sp_arg = net[:, cfg['z_dim']:]
         else:
             net = tf.reshape(
                 net, [n_samples, cfg['batch_size'], 2 * cfg['z_dim']])
             mu = net[:, :, 0:cfg['z_dim']]
             sp_arg = net[:, :, cfg['z_dim']:]
     sigma = 1e-6 + tf.nn.softplus(sp_arg)
     return dist.Normal(loc=mu, scale=sigma, validate_args=False)