Exemplo n.º 1
0
    def knn_string_build(self, digit_pos, bar, red_threshold=120):
        knn_string = ''
        char_width = self.layout.champ_detail.bar_char_width
        for i in range(4):
            start =  max(0, digit_pos + (i * char_width))
            end = min(start + char_width, len(bar[0]))
            # Examine the digit area for red pixels greater than the threshold
            # (indication of white text, since backgrounds are blue and green).
            digit_subimg = bar[:, start:end]
            thresh = cv2.inRange(digit_subimg, (0, 0, red_threshold), (255, 255, 255))
            num_red = cv2.countNonZero(thresh)
            if num_red  < 5:
                knn_char = ' '
            else:
                knn_char = self.knn_match(digit_subimg)
                # geração de dados pra treino/teste
                # cv2.imwrite("testdata/numbers/roi-%s.png" % self.counter, digit_subimg)
                # self.counter += 1

            if self.debug:
                imprev(digit_subimg)
                print(knn_char)
                # imprev(digit_subimg)
            knn_string += knn_char

        knn_string = knn_string.strip()
        try:
            return int(knn_string)
        except ValueError:
            # TODO: We should use these as test cases to improve this algorithm
            return -1
Exemplo n.º 2
0
    def slashfind(self, bar, slash_match_threshold=0.69, allow_sub=True):
        slash_window = self.layout.champ_detail.bar_slash_window
        bar = bar[:, slash_window[0]:slash_window[1]]

        slash_matches = [ cv2.matchTemplate(bar, slash_temp, cv2.TM_CCOEFF_NORMED)[0] for slash_temp in self.slash_temps ]
        best_matches = np.maximum.reduce(slash_matches)
        slash_loc = np.where(best_matches == best_matches.max())[0]
        
        if len(slash_loc) > 1:
            # There was a tie for first. Use the first value.
            if self.debug:
                print 'found %d slashes' % len(slash_loc)
            slash_loc = [slash_loc[0]]

        if best_matches[slash_loc] < slash_match_threshold:
            if self.debug:
                print 'best match was below threshold:', best_matches[slash_loc]

        if self.debug:
            print 'slash_loc', slash_loc
            imprev(bar)

        return slash_loc[0] + slash_window[0]
Exemplo n.º 3
0
    def flatten(self, img):
        return img.reshape((1,img.shape[0]*img.shape[1]))

    def knn_match(self, digit, k_val=1):
        # Convert the digit image into a float array of the flattened grayscale image
        flat_grayscale = self.flatten(cv2.cvtColor(digit, cv2.COLOR_BGR2GRAY))
        float_vals = np.float32(flat_grayscale)

        # Try to find the closest match in our model to that float array
        nearest_float = self.model.findNearest(float_vals, k=k_val)[0]

        # We get an ascii value of the closest match. Return the actual character
        return str(int(nearest_float))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Given a frame image, prints the health and mana values and percents')
    parser.add_argument('-i','--img', help='input image', required=True)
    parser.add_argument('-v','--verbose', action='store_true', help='verbose debugging info')
    args = parser.parse_args()

    frame = cv2.imread(args.img)
    layout = spatial_layout.layout_1280x1024_6_10()

    hAndm = HealthManaCalc(layout, debug=args.verbose).get_health_and_mana(frame)
    print("Health", hAndm['health'])
    print("Mana", hAndm['mana'])

    imprev(frame, label=args.img, mag=False, scale=1)