Exemplo n.º 1
0
def test_model(model,
               X,
               y,
               error_fn=None,
               score_fn=None,
               search_params=None,
               verbose=True):

    maybe_print('Training model...', verbose)
    if search_params is not None:
        validator = cv.DataFrameCV(model,
                                   search_params,
                                   n_folds=args.nfolds,
                                   error_fn=error_fn,
                                   score_fn=score_fn,
                                   verbose=verbose)
        validator.fit(X, y)
        err = validator.best_result
    else:
        err = cv.cv_dataframe(model,
                              X,
                              y,
                              err_fn,
                              score_fn,
                              n_folds=args.nfolds,
                              verbose=verbose)
    return err
Exemplo n.º 2
0
def train_model(model, X, y, parameters=None, verbose=True):
    if parameters is None:
        parameters = {}
    else:
        parameters = parse_parameters(parameters)

    model.set_params(**parameters)
    maybe_print('Fitting model...', verbose)
    model.fit(X, y)
    maybe_print('Done!', verbose)
    return model
Exemplo n.º 3
0
def train_model(model, X, y, parameters=None, verbose=True):
    if parameters is None:
        parameters = {}
    else:
        parameters = parse_parameters(parameters)

    model.set_params(**parameters)
    maybe_print('Fitting model...', verbose)
    model.fit(X, y)
    maybe_print('Done!', verbose)
    return model
Exemplo n.º 4
0
def test_model(model, X, y, error_fn=None, score_fn=None, 
               search_params=None, verbose=True):

    maybe_print('Training model...', verbose)
    if search_params is not None:
        validator = cv.DataFrameCV(model, search_params, 
                                   n_folds=args.nfolds,
                                   error_fn=error_fn,
                                   score_fn=score_fn,
                                   verbose=verbose)
        validator.fit(X, y)
        err = validator.best_result
    else:
        err = cv.cv_dataframe(model, X, y, err_fn, score_fn, 
                              n_folds=args.nfolds, verbose=verbose)
    return err
Exemplo n.º 5
0
def setup_model(source, builder, objective_fn, verbose=True):
    maybe_print('Building events...', verbose)
    X = builder.build_events(source)
    maybe_print('Calculating objective...', verbose)
    y = objective_fn(X)
    return (X, y)
Exemplo n.º 6
0
def setup_model(source, builder, objective_fn, verbose=True):
    maybe_print('Building events...', verbose)
    X = builder.build_events(source)
    maybe_print('Calculating objective...', verbose)
    y = objective_fn(X)
    return (X, y)