Exemplo n.º 1
0
def test(args, net, test_loader, boardio, textio):

    test_loss, test_cycle_loss, \
    test_mse_ab, test_mae_ab, test_mse_ba, test_mae_ba, test_rotations_ab, test_translations_ab, \
    test_rotations_ab_pred, \
    test_translations_ab_pred, test_rotations_ba, test_translations_ba, test_rotations_ba_pred, \
    test_translations_ba_pred, test_eulers_ab, test_eulers_ba = test_one_epoch(args, net, test_loader)
    test_rmse_ab = np.sqrt(test_mse_ab)
    test_rmse_ba = np.sqrt(test_mse_ba)

    test_rotations_ab_pred_euler = npmat2euler(test_rotations_ab_pred)
    test_r_mse_ab = np.mean(
        (test_rotations_ab_pred_euler - np.degrees(test_eulers_ab))**2)
    test_r_rmse_ab = np.sqrt(test_r_mse_ab)
    test_r_mae_ab = np.mean(
        np.abs(test_rotations_ab_pred_euler - np.degrees(test_eulers_ab)))
    test_t_mse_ab = np.mean(
        (test_translations_ab - test_translations_ab_pred)**2)
    test_t_rmse_ab = np.sqrt(test_t_mse_ab)
    test_t_mae_ab = np.mean(
        np.abs(test_translations_ab - test_translations_ab_pred))

    test_rotations_ba_pred_euler = npmat2euler(test_rotations_ba_pred, 'xyz')
    test_r_mse_ba = np.mean(
        (test_rotations_ba_pred_euler - np.degrees(test_eulers_ba))**2)
    test_r_rmse_ba = np.sqrt(test_r_mse_ba)
    test_r_mae_ba = np.mean(
        np.abs(test_rotations_ba_pred_euler - np.degrees(test_eulers_ba)))
    test_t_mse_ba = np.mean(
        (test_translations_ba - test_translations_ba_pred)**2)
    test_t_rmse_ba = np.sqrt(test_t_mse_ba)
    test_t_mae_ba = np.mean(
        np.abs(test_translations_ba - test_translations_ba_pred))

    textio.cprint('==FINAL TEST==')
    textio.cprint('A--------->B')
    textio.cprint(
        'EPOCH:: %d, Loss: %f, Cycle Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
        'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
        (-1, test_loss, test_cycle_loss, test_mse_ab, test_rmse_ab,
         test_mae_ab, test_r_mse_ab, test_r_rmse_ab, test_r_mae_ab,
         test_t_mse_ab, test_t_rmse_ab, test_t_mae_ab))
    textio.cprint('B--------->A')
    textio.cprint(
        'EPOCH:: %d, Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
        'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
        (-1, test_loss, test_mse_ba, test_rmse_ba, test_mae_ba, test_r_mse_ba,
         test_r_rmse_ba, test_r_mae_ba, test_t_mse_ba, test_t_rmse_ba,
         test_t_mae_ba))
Exemplo n.º 2
0
 def _train_one_epoch(self, epoch, train_loader, opt, temp):
     self.train()
     total_loss = 0
     rotations_ab = []
     translations_ab = []
     rotations_ab_pred = []
     translations_ab_pred = []
     eulers_ab = []
     num_examples = 0
     for data in tqdm(train_loader):
         src, tgt, rotation_ab, translation_ab, rotation_ba, translation_ba, euler_ab, euler_ba = [d.cuda()
                                                                                                   for d in data]
         loss, rotation_ab_pred, translation_ab_pred = self._train_one_batch(src, tgt, rotation_ab, translation_ab,
                                                                             opt, temp)
         batch_size = src.size(0)
         num_examples += batch_size
         total_loss = total_loss + loss * batch_size
         rotations_ab.append(rotation_ab.detach().cpu().numpy())
         translations_ab.append(translation_ab.detach().cpu().numpy())
         rotations_ab_pred.append(rotation_ab_pred.detach().cpu().numpy())
         translations_ab_pred.append(translation_ab_pred.detach().cpu().numpy())
         eulers_ab.append(euler_ab.cpu().numpy())
     avg_loss = total_loss / num_examples
     # (num_examples, 3, 3)
     rotations_ab = np.concatenate(rotations_ab, axis=0)
     translations_ab = np.concatenate(translations_ab, axis=0)
     rotations_ab_pred = np.concatenate(rotations_ab_pred, axis=0)
     translations_ab_pred = np.concatenate(translations_ab_pred, axis=0)
     eulers_ab = np.degrees(np.concatenate(eulers_ab, axis=0))
     eulers_ab_pred = npmat2euler(rotations_ab_pred)
     r_ab_mse = np.mean((eulers_ab - eulers_ab_pred) ** 2)
     r_ab_rmse = np.sqrt(r_ab_mse)
     r_ab_mae = np.mean(np.abs(eulers_ab - eulers_ab_pred))
     rot = np.matmul(rotations_ab_pred.transpose(0, 2, 1), rotations_ab)
     rot_trace = rot[:, 0, 0] + rot[:, 1, 1] + rot[:, 2, 2]
     residual_rotdeg = np.arccos(np.clip(0.5 * (rot_trace - 1), a_min=-1.0, a_max=1.0)) * 180.0 / np.pi
     residual_rotdeg = np.mean(residual_rotdeg)
     t_ab_mse = np.mean((translations_ab - translations_ab_pred) ** 2)
     t_ab_rmse = np.sqrt(t_ab_mse)
     t_ab_mae = np.mean(np.abs(translations_ab - translations_ab_pred))
     r_ab_r2_score = r2_score(eulers_ab, eulers_ab_pred)
     t_ab_r2_score = r2_score(translations_ab, translations_ab_pred)
     info = {'arrow': 'A->B',
             'epoch': epoch,
             'stage': 'train',
             'loss': avg_loss,
             'r_ab_mse': r_ab_mse,
             'r_ab_rmse': r_ab_rmse,
             'r_ab_mae': r_ab_mae,
             't_ab_mse': t_ab_mse,
             't_ab_rmse': t_ab_rmse,
             't_ab_mae': t_ab_mae,
             'r_ab_r2_score': r_ab_r2_score,
             't_ab_r2_score': t_ab_r2_score,
             'residual_rotdeg': residual_rotdeg,
             'temperature': temp}
     self.logger.write(info)
     return info
Exemplo n.º 3
0
 def _test_one_epoch(self, epoch, test_loader, temp):
     self.eval()
     total_loss = 0
     rotations_ab = []
     translations_ab = []
     rotations_ab_pred = []
     translations_ab_pred = []
     eulers_ab = []
     num_examples = 0
     for data in tqdm(test_loader):
         src, tgt, rotation_ab, translation_ab, rotation_ba, translation_ba, euler_ab, euler_ba = [
             d.cuda() for d in data
         ]
         loss, rotation_ab_pred, translation_ab_pred = self._test_one_batch(
             src, tgt, rotation_ab, translation_ab, temp)
         batch_size = src.size(0)
         num_examples += batch_size
         total_loss = total_loss + loss * batch_size
         rotations_ab.append(rotation_ab.detach().cpu().numpy())
         translations_ab.append(translation_ab.detach().cpu().numpy())
         rotations_ab_pred.append(rotation_ab_pred.detach().cpu().numpy())
         translations_ab_pred.append(
             translation_ab_pred.detach().cpu().numpy())
         eulers_ab.append(euler_ab.cpu().numpy())
     avg_loss = total_loss / num_examples
     rotations_ab = np.concatenate(rotations_ab, axis=0)
     translations_ab = np.concatenate(translations_ab, axis=0)
     rotations_ab_pred = np.concatenate(rotations_ab_pred, axis=0)
     translations_ab_pred = np.concatenate(translations_ab_pred, axis=0)
     eulers_ab = np.degrees(np.concatenate(eulers_ab, axis=0))
     eulers_ab_pred = npmat2euler(rotations_ab_pred)
     r_ab_mse = np.mean((eulers_ab - eulers_ab_pred)**2)
     r_ab_rmse = np.sqrt(r_ab_mse)
     r_ab_mae = np.mean(np.abs(eulers_ab - eulers_ab_pred))
     t_ab_mse = np.mean((translations_ab - translations_ab_pred)**2)
     t_ab_rmse = np.sqrt(t_ab_mse)
     t_ab_mae = np.mean(np.abs(translations_ab - translations_ab_pred))
     r_ab_r2_score = r2_score(eulers_ab, eulers_ab_pred)
     t_ab_r2_score = r2_score(translations_ab, translations_ab_pred)
     info = {
         'arrow': 'A->B',
         'epoch': epoch,
         'stage': 'test',
         'loss': avg_loss,
         'r_ab_mse': r_ab_mse,
         'r_ab_rmse': r_ab_rmse,
         'r_ab_mae': r_ab_mae,
         't_ab_mse': t_ab_mse,
         't_ab_rmse': t_ab_rmse,
         't_ab_mae': t_ab_mae,
         'r_ab_r2_score': r_ab_r2_score,
         't_ab_r2_score': t_ab_r2_score,
         'temperature': temp
     }
     self.logger.write(info)
     return info
Exemplo n.º 4
0
    def __getitem__(self, idx):
        file0 = os.path.join(self.root, self.files[idx][0])
        file1 = os.path.join(self.root, self.files[idx][1])
        data0 = np.load(file0)
        data1 = np.load(file1)
        xyz0 = data0["pcd"]
        xyz1 = data1["pcd"]

        if self.random_rotation:
            T0 = sample_random_trans(xyz0, self.randg, self.rotation_range)
            T1 = sample_random_trans(xyz1, self.randg, self.rotation_range)
            trans = T1 @ np.linalg.inv(T0)

            xyz0 = self.apply_transform(xyz0, T0)
            xyz1 = self.apply_transform(xyz1, T1)
        else:
            trans = np.identity(4)

        # Voxelization and sampling
        sel0 = ME.utils.sparse_quantize(xyz0 / self.voxel_size,
                                        return_index=True)
        sel1 = ME.utils.sparse_quantize(xyz1 / self.voxel_size,
                                        return_index=True)
        xyz0 = xyz0[np.random.choice(sel0, self.num_points)]
        xyz1 = xyz1[np.random.choice(sel1, self.num_points)]

        pointcloud1 = xyz0.T
        pointcloud2 = xyz1.T

        inv_trans = np.linalg.inv(trans)
        R_ab = trans[:3, :3]
        translation_ab = trans[:3, 3]
        euler_ab = npmat2euler(np.expand_dims(R_ab, 0))

        R_ba = inv_trans[:3, :3]
        translation_ba = inv_trans[:3, 3]
        euler_ba = npmat2euler(np.expand_dims(R_ba, 0))

        # Selection
        return pointcloud1.astype('float32'), pointcloud2.astype('float32'), R_ab.astype('float32'), \
               translation_ab.astype('float32'), R_ba.astype('float32'), translation_ba.astype('float32'), \
               euler_ab.astype('float32'), euler_ba.astype('float32')
Exemplo n.º 5
0
def train_one_epoch(args, net, train_loader, opt):
    net.train()

    R_list = []
    t_list = []
    R_pred_list = []
    t_pred_list = []
    euler_list = []

    for src, target, R, t, euler in tqdm(train_loader):
        src = src.cuda()
        target = target.cuda()
        R = R.cuda()
        t = t.cuda()

        opt.zero_grad()
        R_pred, t_pred, loss = net(src, target, R, t)

        R_list.append(R.detach().cpu().numpy())
        t_list.append(t.detach().cpu().numpy())
        R_pred_list.append(R_pred.detach().cpu().numpy())
        t_pred_list.append(t_pred.detach().cpu().numpy())
        euler_list.append(euler.numpy())

        loss.backward()
        opt.step()

    R = np.concatenate(R_list, axis=0)
    t = np.concatenate(t_list, axis=0)
    R_pred = np.concatenate(R_pred_list, axis=0)
    t_pred = np.concatenate(t_pred_list, axis=0)
    euler = np.concatenate(euler_list, axis=0)

    euler_pred = npmat2euler(R_pred)
    r_mse = np.mean((euler_pred - np.degrees(euler))**2)
    r_rmse = np.sqrt(r_mse)
    r_mae = np.mean(np.abs(euler_pred - np.degrees(euler)))
    t_mse = np.mean((t - t_pred)**2)
    t_rmse = np.sqrt(t_mse)
    t_mae = np.mean(np.abs(t - t_pred))

    return r_rmse, r_mae, t_rmse, t_mae
Exemplo n.º 6
0
def test_one_epoch(args, net, test_loader):
    net.eval()

    R_list = []
    t_list = []
    R_pred_list = []
    t_pred_list = []
    euler_list = []
    count = 0
    for src, target, R, t, euler in tqdm(test_loader):

        src = src.cuda()
        target = target.cuda()

        R_pred, t_pred, *_ = net(src, target)
        src2 = torch.matmul(R_pred, src) + t_pred.unsqueeze(-1)

        count += 1
        R_list.append(R.numpy())
        t_list.append(t.numpy())
        R_pred_list.append(R_pred.detach().cpu().numpy())
        t_pred_list.append(t_pred.detach().cpu().numpy())
        euler_list.append(euler.numpy())

    R = np.concatenate(R_list, axis=0)
    t = np.concatenate(t_list, axis=0)
    R_pred = np.concatenate(R_pred_list, axis=0)
    t_pred = np.concatenate(t_pred_list, axis=0)
    euler = np.concatenate(euler_list, axis=0)

    euler_pred = npmat2euler(R_pred)
    r_mse = np.mean((euler_pred - np.degrees(euler))**2)
    r_rmse = np.sqrt(r_mse)
    r_mae = np.mean(np.abs(euler_pred - np.degrees(euler)))
    t_mse = np.mean((t - t_pred)**2)
    t_rmse = np.sqrt(t_mse)
    t_mae = np.mean(np.abs(t - t_pred))

    return r_rmse, r_mae, t_rmse, t_mae
Exemplo n.º 7
0
def test(args, net, test_loader, textio):
    test_loss, test_rotations_ab, test_translations_ab, \
    test_rotations_ab_pred, test_translations_ab_pred, \
    test_eulers_ab = test_one_epoch(args, net, test_loader)

    test_rotations_ab_pred_euler = npmat2euler(test_rotations_ab_pred)
    test_r_mse_ab = np.mean(
        (test_rotations_ab_pred_euler - np.degrees(test_eulers_ab))**2)
    test_r_rmse_ab = np.sqrt(test_r_mse_ab)
    test_r_mae_ab = np.mean(
        np.abs(test_rotations_ab_pred_euler - np.degrees(test_eulers_ab)))
    test_t_mse_ab = np.mean(
        (test_translations_ab - test_translations_ab_pred)**2)
    test_t_rmse_ab = np.sqrt(test_t_mse_ab)
    test_t_mae_ab = np.mean(
        np.abs(test_translations_ab - test_translations_ab_pred))

    textio.cprint('==FINAL TEST==')
    textio.cprint('A--------->B')
    textio.cprint(
        'EPOCH:: %d, Loss: %f, rot_MSE: %f, rot_RMSE: %f, '
        'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f, Corr_Accuracy: %f'
        % (-1, test_loss, test_r_mse_ab, test_r_rmse_ab, test_r_mae_ab,
           test_t_mse_ab, test_t_rmse_ab, test_t_mae_ab, test_corr_accuracy))
Exemplo n.º 8
0
def train(args, net, train_loader, test_loader, boardio, textio):
    if args.use_sgd:
        print("Use SGD")
        opt = optim.SGD(net.parameters(),
                        lr=args.lr * 100,
                        momentum=args.momentum,
                        weight_decay=1e-4)
    else:
        print("Use Adam")
        opt = optim.Adam(net.parameters(), lr=args.lr, weight_decay=1e-4)
    scheduler = MultiStepLR(opt, milestones=[75, 150, 200], gamma=0.1)

    best_test_loss = np.inf
    best_test_cycle_loss = np.inf
    best_test_mse_ab = np.inf
    best_test_rmse_ab = np.inf
    best_test_mae_ab = np.inf

    best_test_r_mse_ab = np.inf
    best_test_r_rmse_ab = np.inf
    best_test_r_mae_ab = np.inf
    best_test_t_mse_ab = np.inf
    best_test_t_rmse_ab = np.inf
    best_test_t_mae_ab = np.inf

    best_test_mse_ba = np.inf
    best_test_rmse_ba = np.inf
    best_test_mae_ba = np.inf

    best_test_r_mse_ba = np.inf
    best_test_r_rmse_ba = np.inf
    best_test_r_mae_ba = np.inf
    best_test_t_mse_ba = np.inf
    best_test_t_rmse_ba = np.inf
    best_test_t_mae_ba = np.inf

    for epoch in range(args.epochs):
        scheduler.step()
        train_loss, train_cycle_loss, \
        train_mse_ab, train_mae_ab, train_mse_ba, train_mae_ba, train_rotations_ab, train_translations_ab, \
        train_rotations_ab_pred, \
        train_translations_ab_pred, train_rotations_ba, train_translations_ba, train_rotations_ba_pred, \
        train_translations_ba_pred, train_eulers_ab, train_eulers_ba = train_one_epoch(args, net, train_loader, opt)
        test_loss, test_cycle_loss, \
        test_mse_ab, test_mae_ab, test_mse_ba, test_mae_ba, test_rotations_ab, test_translations_ab, \
        test_rotations_ab_pred, \
        test_translations_ab_pred, test_rotations_ba, test_translations_ba, test_rotations_ba_pred, \
        test_translations_ba_pred, test_eulers_ab, test_eulers_ba = test_one_epoch(args, net, test_loader)
        train_rmse_ab = np.sqrt(train_mse_ab)
        test_rmse_ab = np.sqrt(test_mse_ab)

        train_rmse_ba = np.sqrt(train_mse_ba)
        test_rmse_ba = np.sqrt(test_mse_ba)

        train_rotations_ab_pred_euler = npmat2euler(train_rotations_ab_pred)
        train_r_mse_ab = np.mean(
            (train_rotations_ab_pred_euler - np.degrees(train_eulers_ab))**2)
        train_r_rmse_ab = np.sqrt(train_r_mse_ab)
        train_r_mae_ab = np.mean(
            np.abs(train_rotations_ab_pred_euler -
                   np.degrees(train_eulers_ab)))
        train_t_mse_ab = np.mean(
            (train_translations_ab - train_translations_ab_pred)**2)
        train_t_rmse_ab = np.sqrt(train_t_mse_ab)
        train_t_mae_ab = np.mean(
            np.abs(train_translations_ab - train_translations_ab_pred))

        train_rotations_ba_pred_euler = npmat2euler(train_rotations_ba_pred,
                                                    'xyz')
        train_r_mse_ba = np.mean(
            (train_rotations_ba_pred_euler - np.degrees(train_eulers_ba))**2)
        train_r_rmse_ba = np.sqrt(train_r_mse_ba)
        train_r_mae_ba = np.mean(
            np.abs(train_rotations_ba_pred_euler -
                   np.degrees(train_eulers_ba)))
        train_t_mse_ba = np.mean(
            (train_translations_ba - train_translations_ba_pred)**2)
        train_t_rmse_ba = np.sqrt(train_t_mse_ba)
        train_t_mae_ba = np.mean(
            np.abs(train_translations_ba - train_translations_ba_pred))

        test_rotations_ab_pred_euler = npmat2euler(test_rotations_ab_pred)
        test_r_mse_ab = np.mean(
            (test_rotations_ab_pred_euler - np.degrees(test_eulers_ab))**2)
        test_r_rmse_ab = np.sqrt(test_r_mse_ab)
        test_r_mae_ab = np.mean(
            np.abs(test_rotations_ab_pred_euler - np.degrees(test_eulers_ab)))
        test_t_mse_ab = np.mean(
            (test_translations_ab - test_translations_ab_pred)**2)
        test_t_rmse_ab = np.sqrt(test_t_mse_ab)
        test_t_mae_ab = np.mean(
            np.abs(test_translations_ab - test_translations_ab_pred))

        test_rotations_ba_pred_euler = npmat2euler(test_rotations_ba_pred,
                                                   'xyz')
        test_r_mse_ba = np.mean(
            (test_rotations_ba_pred_euler - np.degrees(test_eulers_ba))**2)
        test_r_rmse_ba = np.sqrt(test_r_mse_ba)
        test_r_mae_ba = np.mean(
            np.abs(test_rotations_ba_pred_euler - np.degrees(test_eulers_ba)))
        test_t_mse_ba = np.mean(
            (test_translations_ba - test_translations_ba_pred)**2)
        test_t_rmse_ba = np.sqrt(test_t_mse_ba)
        test_t_mae_ba = np.mean(
            np.abs(test_translations_ba - test_translations_ba_pred))

        if best_test_loss >= test_loss:
            best_test_loss = test_loss
            best_test_cycle_loss = test_cycle_loss

            best_test_mse_ab = test_mse_ab
            best_test_rmse_ab = test_rmse_ab
            best_test_mae_ab = test_mae_ab

            best_test_r_mse_ab = test_r_mse_ab
            best_test_r_rmse_ab = test_r_rmse_ab
            best_test_r_mae_ab = test_r_mae_ab

            best_test_t_mse_ab = test_t_mse_ab
            best_test_t_rmse_ab = test_t_rmse_ab
            best_test_t_mae_ab = test_t_mae_ab

            best_test_mse_ba = test_mse_ba
            best_test_rmse_ba = test_rmse_ba
            best_test_mae_ba = test_mae_ba

            best_test_r_mse_ba = test_r_mse_ba
            best_test_r_rmse_ba = test_r_rmse_ba
            best_test_r_mae_ba = test_r_mae_ba

            best_test_t_mse_ba = test_t_mse_ba
            best_test_t_rmse_ba = test_t_rmse_ba
            best_test_t_mae_ba = test_t_mae_ba

            if torch.cuda.device_count() > 1:
                torch.save(
                    net.module.state_dict(),
                    'checkpoints/%s/models/model.best.t7' % args.exp_name)
            else:
                torch.save(
                    net.state_dict(),
                    'checkpoints/%s/models/model.best.t7' % args.exp_name)

        textio.cprint('==TRAIN==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, Cycle Loss:, %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, train_loss, train_cycle_loss, train_mse_ab, train_rmse_ab,
             train_mae_ab, train_r_mse_ab, train_r_rmse_ab, train_r_mae_ab,
             train_t_mse_ab, train_t_rmse_ab, train_t_mae_ab))
        textio.cprint('B--------->A')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, train_loss, train_mse_ba, train_rmse_ba, train_mae_ba,
             train_r_mse_ba, train_r_rmse_ba, train_r_mae_ba, train_t_mse_ba,
             train_t_rmse_ba, train_t_mae_ba))

        textio.cprint('==TEST==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, Cycle Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, test_loss, test_cycle_loss, test_mse_ab, test_rmse_ab,
             test_mae_ab, test_r_mse_ab, test_r_rmse_ab, test_r_mae_ab,
             test_t_mse_ab, test_t_rmse_ab, test_t_mae_ab))
        textio.cprint('B--------->A')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, test_loss, test_mse_ba, test_rmse_ba, test_mae_ba,
             test_r_mse_ba, test_r_rmse_ba, test_r_mae_ba, test_t_mse_ba,
             test_t_rmse_ba, test_t_mae_ba))

        textio.cprint('==BEST TEST==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, Cycle Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, best_test_loss, best_test_cycle_loss, best_test_mse_ab,
             best_test_rmse_ab, best_test_mae_ab, best_test_r_mse_ab,
             best_test_r_rmse_ab, best_test_r_mae_ab, best_test_t_mse_ab,
             best_test_t_rmse_ab, best_test_t_mae_ab))
        textio.cprint('B--------->A')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, MSE: %f, RMSE: %f, MAE: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, best_test_loss, best_test_mse_ba, best_test_rmse_ba,
             best_test_mae_ba, best_test_r_mse_ba, best_test_r_rmse_ba,
             best_test_r_mae_ba, best_test_t_mse_ba, best_test_t_rmse_ba,
             best_test_t_mae_ba))

        boardio.add_scalar('A->B/train/loss', train_loss, epoch)
        boardio.add_scalar('A->B/train/MSE', train_mse_ab, epoch)
        boardio.add_scalar('A->B/train/RMSE', train_rmse_ab, epoch)
        boardio.add_scalar('A->B/train/MAE', train_mae_ab, epoch)
        boardio.add_scalar('A->B/train/rotation/MSE', train_r_mse_ab, epoch)
        boardio.add_scalar('A->B/train/rotation/RMSE', train_r_rmse_ab, epoch)
        boardio.add_scalar('A->B/train/rotation/MAE', train_r_mae_ab, epoch)
        boardio.add_scalar('A->B/train/translation/MSE', train_t_mse_ab, epoch)
        boardio.add_scalar('A->B/train/translation/RMSE', train_t_rmse_ab,
                           epoch)
        boardio.add_scalar('A->B/train/translation/MAE', train_t_mae_ab, epoch)

        boardio.add_scalar('B->A/train/loss', train_loss, epoch)
        boardio.add_scalar('B->A/train/MSE', train_mse_ba, epoch)
        boardio.add_scalar('B->A/train/RMSE', train_rmse_ba, epoch)
        boardio.add_scalar('B->A/train/MAE', train_mae_ba, epoch)
        boardio.add_scalar('B->A/train/rotation/MSE', train_r_mse_ba, epoch)
        boardio.add_scalar('B->A/train/rotation/RMSE', train_r_rmse_ba, epoch)
        boardio.add_scalar('B->A/train/rotation/MAE', train_r_mae_ba, epoch)
        boardio.add_scalar('B->A/train/translation/MSE', train_t_mse_ba, epoch)
        boardio.add_scalar('B->A/train/translation/RMSE', train_t_rmse_ba,
                           epoch)
        boardio.add_scalar('B->A/train/translation/MAE', train_t_mae_ba, epoch)

        ############TEST
        boardio.add_scalar('A->B/test/loss', test_loss, epoch)
        boardio.add_scalar('A->B/test/MSE', test_mse_ab, epoch)
        boardio.add_scalar('A->B/test/RMSE', test_rmse_ab, epoch)
        boardio.add_scalar('A->B/test/MAE', test_mae_ab, epoch)
        boardio.add_scalar('A->B/test/rotation/MSE', test_r_mse_ab, epoch)
        boardio.add_scalar('A->B/test/rotation/RMSE', test_r_rmse_ab, epoch)
        boardio.add_scalar('A->B/test/rotation/MAE', test_r_mae_ab, epoch)
        boardio.add_scalar('A->B/test/translation/MSE', test_t_mse_ab, epoch)
        boardio.add_scalar('A->B/test/translation/RMSE', test_t_rmse_ab, epoch)
        boardio.add_scalar('A->B/test/translation/MAE', test_t_mae_ab, epoch)

        boardio.add_scalar('B->A/test/loss', test_loss, epoch)
        boardio.add_scalar('B->A/test/MSE', test_mse_ba, epoch)
        boardio.add_scalar('B->A/test/RMSE', test_rmse_ba, epoch)
        boardio.add_scalar('B->A/test/MAE', test_mae_ba, epoch)
        boardio.add_scalar('B->A/test/rotation/MSE', test_r_mse_ba, epoch)
        boardio.add_scalar('B->A/test/rotation/RMSE', test_r_rmse_ba, epoch)
        boardio.add_scalar('B->A/test/rotation/MAE', test_r_mae_ba, epoch)
        boardio.add_scalar('B->A/test/translation/MSE', test_t_mse_ba, epoch)
        boardio.add_scalar('B->A/test/translation/RMSE', test_t_rmse_ba, epoch)
        boardio.add_scalar('B->A/test/translation/MAE', test_t_mae_ba, epoch)

        ############BEST TEST
        boardio.add_scalar('A->B/best_test/loss', best_test_loss, epoch)
        boardio.add_scalar('A->B/best_test/MSE', best_test_mse_ab, epoch)
        boardio.add_scalar('A->B/best_test/RMSE', best_test_rmse_ab, epoch)
        boardio.add_scalar('A->B/best_test/MAE', best_test_mae_ab, epoch)
        boardio.add_scalar('A->B/best_test/rotation/MSE', best_test_r_mse_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/rotation/RMSE', best_test_r_rmse_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/rotation/MAE', best_test_r_mae_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/translation/MSE',
                           best_test_t_mse_ab, epoch)
        boardio.add_scalar('A->B/best_test/translation/RMSE',
                           best_test_t_rmse_ab, epoch)
        boardio.add_scalar('A->B/best_test/translation/MAE',
                           best_test_t_mae_ab, epoch)

        boardio.add_scalar('B->A/best_test/loss', best_test_loss, epoch)
        boardio.add_scalar('B->A/best_test/MSE', best_test_mse_ba, epoch)
        boardio.add_scalar('B->A/best_test/RMSE', best_test_rmse_ba, epoch)
        boardio.add_scalar('B->A/best_test/MAE', best_test_mae_ba, epoch)
        boardio.add_scalar('B->A/best_test/rotation/MSE', best_test_r_mse_ba,
                           epoch)
        boardio.add_scalar('B->A/best_test/rotation/RMSE', best_test_r_rmse_ba,
                           epoch)
        boardio.add_scalar('B->A/best_test/rotation/MAE', best_test_r_mae_ba,
                           epoch)
        boardio.add_scalar('B->A/best_test/translation/MSE',
                           best_test_t_mse_ba, epoch)
        boardio.add_scalar('B->A/best_test/translation/RMSE',
                           best_test_t_rmse_ba, epoch)
        boardio.add_scalar('B->A/best_test/translation/MAE',
                           best_test_t_mae_ba, epoch)

        if torch.cuda.device_count() > 1:
            torch.save(
                net.module.state_dict(),
                'checkpoints/%s/models/model.%d.t7' % (args.exp_name, epoch))
        else:
            torch.save(
                net.state_dict(),
                'checkpoints/%s/models/model.%d.t7' % (args.exp_name, epoch))
        gc.collect()
Exemplo n.º 9
0
    def _train_one_epoch(self, epoch, train_loader, opt):
        self.train()
        total_loss = 0
        rotations_ab = []
        translations_ab = []
        rotations_ab_pred = []
        translations_ab_pred = []
        eulers_ab = []
        num_examples = 0
        total_feature_alignment_loss = 0.0
        total_cycle_consistency_loss = 0.0
        total_scale_consensus_loss = 0.0
        for data in tqdm(train_loader):
            src, tgt, rotation_ab, translation_ab, rotation_ba, translation_ba, euler_ab, euler_ba = [d.cuda()
                                                                                                      for d in data]
            loss, feature_alignment_loss, cycle_consistency_loss, scale_consensus_loss,\
            rotation_ab_pred, translation_ab_pred = self._train_one_batch(src, tgt, rotation_ab, translation_ab,
                                                                                opt)
            batch_size = src.size(0)
            num_examples += batch_size
            total_loss = total_loss + loss * batch_size
            total_feature_alignment_loss = total_feature_alignment_loss + feature_alignment_loss * batch_size
            total_cycle_consistency_loss = total_cycle_consistency_loss + cycle_consistency_loss * batch_size
            total_scale_consensus_loss = total_scale_consensus_loss + scale_consensus_loss * batch_size

            rotations_ab.append(rotation_ab.detach().cpu().numpy())
            translations_ab.append(translation_ab.detach().cpu().numpy())
            rotations_ab_pred.append(rotation_ab_pred.detach().cpu().numpy())
            translations_ab_pred.append(translation_ab_pred.detach().cpu().numpy())
            eulers_ab.append(euler_ab.cpu().numpy())
        avg_loss = total_loss / num_examples
        avg_feature_alignment_loss = total_feature_alignment_loss / num_examples
        avg_cycle_consistency_loss = total_cycle_consistency_loss / num_examples
        avg_scale_consensus_loss = total_scale_consensus_loss / num_examples

        rotations_ab = np.concatenate(rotations_ab, axis=0)
        translations_ab = np.concatenate(translations_ab, axis=0)
        rotations_ab_pred = np.concatenate(rotations_ab_pred, axis=0)
        translations_ab_pred = np.concatenate(translations_ab_pred, axis=0)
        eulers_ab = np.degrees(np.concatenate(eulers_ab, axis=0))
        eulers_ab_pred = npmat2euler(rotations_ab_pred)
        r_ab_mse = np.mean((eulers_ab-eulers_ab_pred)**2)
        r_ab_rmse = np.sqrt(r_ab_mse)
        r_ab_mae = np.mean(np.abs(eulers_ab-eulers_ab_pred))
        t_ab_mse = np.mean((translations_ab-translations_ab_pred)**2)
        t_ab_rmse = np.sqrt(t_ab_mse)
        t_ab_mae = np.mean(np.abs(translations_ab-translations_ab_pred))
        r_ab_r2_score = r2_score(eulers_ab, eulers_ab_pred)
        t_ab_r2_score = r2_score(translations_ab, translations_ab_pred)
        info = {'arrow': 'A->B',
                'epoch': epoch,
                'stage': 'train',
                'loss': avg_loss,
                'feature_alignment_loss': avg_feature_alignment_loss,
                'cycle_consistency_loss': avg_cycle_consistency_loss,
                'scale_consensus_loss': avg_scale_consensus_loss,
                'r_ab_mse': r_ab_mse,
                'r_ab_rmse': r_ab_rmse,
                'r_ab_mae': r_ab_mae,
                't_ab_mse': t_ab_mse,
                't_ab_rmse': t_ab_rmse,
                't_ab_mae': t_ab_mae,
                'r_ab_r2_score': r_ab_r2_score,
                't_ab_r2_score': t_ab_r2_score}
        self.logger.write(info)
        return info
Exemplo n.º 10
0
def train(args, model, train_loader, test_loader, boardio, textio, checkpoint):
    learnable_params = filter(lambda p: p.requires_grad, model.parameters())
    if args.optimizer == 'Adam':
        optimizer = torch.optim.Adam(learnable_params)
    else:
        optimizer = torch.optim.SGD(learnable_params, lr=0.1)

    if checkpoint is not None:
        min_loss = checkpoint['min_loss']
        optimizer.load_state_dict(checkpoint['optimizer'])

    best_test_loss = np.inf
    best_test_r_mse_ab = np.inf
    best_test_r_rmse_ab = np.inf
    best_test_r_mae_ab = np.inf
    best_test_t_mse_ab = np.inf
    best_test_t_rmse_ab = np.inf
    best_test_t_mae_ab = np.inf

    for epoch in range(args.start_epoch, args.epochs):
        train_loss, train_rotations_ab, train_translations_ab, train_rotations_ab_pred, train_translations_ab_pred, train_eulers_ab = train_one_epoch(
            args.device, model, train_loader, optimizer)
        test_loss, test_rotations_ab, test_translations_ab, test_rotations_ab_pred, test_translations_ab_pred, test_eulers_ab = test_one_epoch(
            args.device, model, test_loader)

        train_rotations_ab_pred_euler = npmat2euler(train_rotations_ab_pred)
        train_r_mse_ab = np.mean(
            (train_rotations_ab_pred_euler - np.degrees(train_eulers_ab))**2)
        train_r_rmse_ab = np.sqrt(train_r_mse_ab)
        train_r_mae_ab = np.mean(
            np.abs(train_rotations_ab_pred_euler -
                   np.degrees(train_eulers_ab)))
        train_t_mse_ab = np.mean(
            (train_translations_ab - train_translations_ab_pred)**2)
        train_t_rmse_ab = np.sqrt(train_t_mse_ab)
        train_t_mae_ab = np.mean(
            np.abs(train_translations_ab - train_translations_ab_pred))

        test_rotations_ab_pred_euler = npmat2euler(test_rotations_ab_pred)
        test_r_mse_ab = np.mean(
            (test_rotations_ab_pred_euler - np.degrees(test_eulers_ab))**2)
        test_r_rmse_ab = np.sqrt(test_r_mse_ab)
        test_r_mae_ab = np.mean(
            np.abs(test_rotations_ab_pred_euler - np.degrees(test_eulers_ab)))
        test_t_mse_ab = np.mean(
            (test_translations_ab - test_translations_ab_pred)**2)
        test_t_rmse_ab = np.sqrt(test_t_mse_ab)
        test_t_mae_ab = np.mean(
            np.abs(test_translations_ab - test_translations_ab_pred))

        if test_loss < best_test_loss:
            best_test_loss = test_loss
            best_test_r_mse_ab = test_r_mse_ab
            best_test_r_rmse_ab = test_r_rmse_ab
            best_test_r_mae_ab = test_r_mae_ab

            best_test_t_mse_ab = test_t_mse_ab
            best_test_t_rmse_ab = test_t_rmse_ab
            best_test_t_mae_ab = test_t_mae_ab

            snap = {
                'epoch': epoch + 1,
                'model': model.state_dict(),
                'min_loss': best_test_loss,
                'optimizer': optimizer.state_dict(),
            }
            torch.save(
                snap,
                'checkpoints/%s/models/best_model_snap.t7' % (args.exp_name))
            torch.save(model.state_dict(),
                       'checkpoints/%s/models/model.best.t7' % (args.exp_name))
            torch.save(
                model.feature_model.state_dict(),
                'checkpoints/%s/models/best_ptnet_model.t7' % (args.exp_name))

        torch.save(snap,
                   'checkpoints/%s/models/model_snap.t7' % (args.exp_name))
        torch.save(model.state_dict(),
                   'checkpoints/%s/models/model.t7' % (args.exp_name))
        torch.save(model.feature_model.state_dict(),
                   'checkpoints/%s/models/ptnet_model.t7' % (args.exp_name))

        boardio.add_scalar('Train Loss', train_loss, epoch)
        boardio.add_scalar('Test Loss', test_loss, epoch)
        boardio.add_scalar('Best Test Loss', best_test_loss, epoch)

        boardio.add_scalar('A->B/train/rotation/MSE', train_r_mse_ab, epoch)
        boardio.add_scalar('A->B/train/rotation/RMSE', train_r_rmse_ab, epoch)
        boardio.add_scalar('A->B/train/rotation/MAE', train_r_mae_ab, epoch)
        boardio.add_scalar('A->B/train/translation/MSE', train_t_mse_ab, epoch)
        boardio.add_scalar('A->B/train/translation/RMSE', train_t_rmse_ab,
                           epoch)
        boardio.add_scalar('A->B/train/translation/MAE', train_t_mae_ab, epoch)

        boardio.add_scalar('A->B/test/rotation/MSE', test_r_mse_ab, epoch)
        boardio.add_scalar('A->B/test/rotation/RMSE', test_r_rmse_ab, epoch)
        boardio.add_scalar('A->B/test/rotation/MAE', test_r_mae_ab, epoch)
        boardio.add_scalar('A->B/test/translation/MSE', test_t_mse_ab, epoch)
        boardio.add_scalar('A->B/test/translation/RMSE', test_t_rmse_ab, epoch)
        boardio.add_scalar('A->B/test/translation/MAE', test_t_mae_ab, epoch)

        boardio.add_scalar('A->B/best_test/rotation/MSE', best_test_r_mse_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/rotation/RMSE', best_test_r_rmse_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/rotation/MAE', best_test_r_mae_ab,
                           epoch)
        boardio.add_scalar('A->B/best_test/translation/MSE',
                           best_test_t_mse_ab, epoch)
        boardio.add_scalar('A->B/best_test/translation/RMSE',
                           best_test_t_rmse_ab, epoch)
        boardio.add_scalar('A->B/best_test/translation/MAE',
                           best_test_t_mae_ab, epoch)

        textio.cprint('==TRAIN==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, train_loss, train_r_mse_ab, train_r_rmse_ab,
             train_r_mae_ab, train_t_mse_ab, train_t_rmse_ab, train_t_mae_ab))

        textio.cprint('==TEST==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, test_loss, test_r_mse_ab, test_r_rmse_ab, test_r_mae_ab,
             test_t_mse_ab, test_t_rmse_ab, test_t_mae_ab))

        textio.cprint('==BEST TEST==')
        textio.cprint('A--------->B')
        textio.cprint(
            'EPOCH:: %d, Loss: %f, rot_MSE: %f, rot_RMSE: %f, '
            'rot_MAE: %f, trans_MSE: %f, trans_RMSE: %f, trans_MAE: %f' %
            (epoch, best_test_loss, best_test_r_mse_ab, best_test_r_rmse_ab,
             best_test_r_mae_ab, best_test_t_mse_ab, best_test_t_rmse_ab,
             best_test_t_mae_ab))