Exemplo n.º 1
0
 def pair_eval(self, X, Y):
     """Evaluate k(x1, y1), k(x2, y2), ..."""
     sigma2s = self.sigma2s
     Xs = old_div(X, np.sqrt(sigma2s))
     Ys = old_div(Y, np.sqrt(sigma2s))
     k = KGauss(1.0)
     return k.pair_eval(Xs, Ys)
Exemplo n.º 2
0
 def eval(self, X, Y):
     """
     Equivalent to dividing each dimension with the corresponding width (not
     width^2) and using the standard Gaussian kernel.
     """
     sigma2s = self.sigma2s
     Xs = old_div(X, np.sqrt(sigma2s))
     Ys = old_div(Y, np.sqrt(sigma2s))
     k = KGauss(1.0)
     return k.eval(Xs, Ys)
Exemplo n.º 3
0
    def pair_gradXY_sum(self, X, Y):
        """
        Compute \sum_{i=1}^d \frac{\partial^2 k(X, Y)}{\partial x_i \partial y_i}
        evaluated at each x_i in X, and y_i in Y.

        X: n x d numpy array.
        Y: n x d numpy array.

        Return a one-dimensional length-n numpy array of the derivatives.
        """
        d = X.shape[1]
        sigma2 = self.sigma2
        D2 = np.sum((X - Y)**2, 1)
        Kvec = np.exp(old_div(-D2, (2.0 * self.sigma2)))
        G = Kvec / sigma2 * (d - old_div(D2, sigma2))
        return G
Exemplo n.º 4
0
    def gradXY_sum(self, X, Y):
        r"""
        Compute \sum_{i=1}^d \frac{\partial^2 k(X, Y)}{\partial x_i \partial y_i}
        evaluated at each x_i in X, and y_i in Y.

        X: nx x d numpy array.
        Y: ny x d numpy array.

        Return a nx x ny numpy array of the derivatives.
        """
        (n1, d1) = X.shape
        (n2, d2) = Y.shape
        assert d1==d2, 'Dimensions of the two inputs must be the same'
        d = d1
        sigma2 = self.sigma2
        D2 = np.sum(X**2, 1)[:, np.newaxis] - 2*np.dot(X, Y.T) + np.sum(Y**2, 1)
        K = np.exp(old_div(-D2,(2.0*sigma2)))
        G = K/sigma2*(d - old_div(D2,sigma2))
        return G
Exemplo n.º 5
0
    def pair_eval(self, X, Y):
        """
        Evaluate k(x1, y1), k(x2, y2), ...

        Parameters
        ----------
        X, Y : n x d numpy array

        Return
        -------
        a numpy array with length n
        """
        (n1, d1) = X.shape
        (n2, d2) = Y.shape
        assert n1 == n2, 'Two inputs must have the same number of instances'
        assert d1 == d2, 'Two inputs must have the same dimension'
        D2 = np.sum((X - Y)**2, 1)
        Kvec = np.exp(old_div(-D2, (2.0 * self.sigma2)))
        return Kvec
Exemplo n.º 6
0
    def eval(self, X, Y):
        """
        Evaluate the Gaussian kernel on the two 2d numpy arrays.

        Parameters
        ----------
        X : n1 x d numpy array
        Y : n2 x d numpy array

        Return
        ------
        K : a n1 x n2 Gram matrix.
        """
        #(n1, d1) = X.shape
        #(n2, d2) = Y.shape
        #assert d1==d2, 'Dimensions of the two inputs must be the same'
        sumx2 = np.reshape(np.sum(X**2, 1), (-1, 1))
        sumy2 = np.reshape(np.sum(Y**2, 1), (1, -1))
        D2 = sumx2 - 2 * np.dot(X, Y.T) + sumy2
        K = np.exp(old_div(-D2, (2.0 * self.sigma2)))
        return K