def run(self): self.ping = os.popen('ping' + paramPing + self.host).read() nqmWlan = calcNQM(getDelay(onlyTimes(self.ping)), getJitter(onlyTimes(self.ping)), getPacketsLoss(onlyPackets(self.ping))) avg = mediaNQM(nqmWlan) self.queue.put(avg)
config = json.load(f) measurements = config["measurements"] for measurement in measurements: print("--------------------- PATH LOSS MODEL {} ---------------------".format(measurement)) output_fig_pgf = os.path.join( input_path, 'path_loss_{}.{}'.format(measurement, OUTPUT_IMG_FORMAT)) CENTER = config[measurement]["center"] #d0 = config[measurement]["d0"] #pl0 = config[measurement]["pl0"] input_file_path = os.path.join( input_path, measurement, input_file_name) df = pd.read_pickle(input_file_path) df = util.onlyPackets(df) d0 = 1 df = df[df.distance > d0] df['distance_log'] = 10*np.log10(df.distance/d0) # df[(df["distance"] < 105) & (df["distance"] > 100)] results = smf.ols('pl_db ~ distance_log', data=df).fit() print(print(results.summary())) fig = plt.figure(figsize=(4, 3)) ax = fig.add_subplot(1, 1, 1) slope, intercept, r_value, p_value, std_err = stats.linregress( df['distance_log'], df['pl_db'])
input_file_name = "preprocessed_data.pkl" with open(os.path.join(processing_path, "conf.json")) as config_file: config_plot = json.load(config_file)["heatmap"] grid_size = config_plot["grid_size"] plot_snr = config_plot["plot_snr"] plot_rss = config_plot["plot_rss"] with open(os.path.join(path_to_measurements, "measurements.json")) as f: config_measurement = json.load(f) measurements = config_measurement["measurements"] for measurement in measurements: print("--------------------- HEATMAP {} ---------------------". format(measurement)) #num_bins = config_measurement[measurement]["freq_samples_bins"] input_file_path = os.path.join(input_path, measurement, input_file_name) for_map = pd.read_pickle(input_file_path) for_map = util.onlyPackets(for_map) #dist_in_bins = pd.cut(x=for_map.distance, bins=num_bins) #rss_in_bins = pd.cut(x=for_map.rssi, bins=num_bins) # #ax = sns.heatmap(for_map.pivot_table("distance", "rssi")) #plt.show() # #sns.distplot(for_map.rssi) sns.jointplot(x=for_map.distance, y=for_map.rssi, kind="hex") plt.show() print("--------------------- DONE HEATMAP ---------------------")