Exemplo n.º 1
0
def plot_hl_write(path):
    scan_modes = ["balanced"]
    frames = []
    for mode in scan_modes:
        frame = util.process_folder(
            path, filter_scan_mode=mode, filter_benchmark="gatt")
        frames.append(frame)
    all_frames = pd.concat(frames)
    # util.print_full(all_frames.groupby(['Operation', 'Connection Interval
    # (s)', 'Phone Model']).mean())
    # util.print_full(all_frames.groupby(['Operation', 'Connection Interval
    # (s)', 'Phone Model']).median())
    all_frames["Phone Model"] = all_frames["Phone Model"].astype("category")
    # all_frames = all_frames[all_frames["Connection Interval (s)"] == 0.32]
    print all_frames
    means = all_frames.groupby(
        ["Phone Model", "Operation", "Connection Interval (s)"],
        as_index=False).mean()
    means = means[means["Operation"] != "Read"]
    print means
    sums = means.groupby(["Phone Model"], as_index=False).sum()
    print sums
    fig, ax1 = plt.subplots()
    wifion_20ms_write = all_frames[(all_frames['Operation'] == 'Write Sum') & (
        all_frames['Connection Interval (s)'] == 0.02) &
                                   (all_frames['WiFi State'] == 'on')]
    print wifion_20ms_write

    sns.barplot(x="Time (s)", y="Phone Model", data=wifion_20ms_write, ax=ax1)
    ax1.set_ylabel('')
    ax1.set_xlabel('Mean Time (s)')
    return fig, ax1
Exemplo n.º 2
0
def plot_rssi():
    path = "../data/rssi"
    df = util.process_folder(path, filter_benchmark='rssi')
    df = df[(df['RSSI (dBm)'] < 0)]
    df["Phone Model"] = df["Phone Model"].astype("category")
    util.set_style(font_scale=1.7)
    util.set_colors()

    # figure 2a
    fig, axarr = plt.subplots(1, 2, sharey='row', figsize=(12, 5.5))

    models = [
        'Samsung Galaxy S3', 'LG Nexus 5X', 'Motorola Nexus 6', 'HTC One M9',
        'Motorola MotoE2', 'Motorola Moto G', 'LG Nexus 4', 'Asus Nexus 7',
        'LG Nexus 5', 'LG G3'
    ]
    models = models[::-1]
    sns.pointplot(x="RSSI (dBm)",
                  y="Phone Model",
                  order=models,
                  hue="Time of Day",
                  hue_order=['Morning', 'Noon', 'Afternoon', 'Night'],
                  markers=['*', '^', '.', 'x'],
                  data=df[(df['Distance (m)'] == 1.0)],
                  join=False,
                  ci=None,
                  ax=axarr[0])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    axarr[0].legend(loc='best',
                    frameon=True,
                    framealpha=1,
                    edgecolor='0',
                    fontsize=14)
    axarr[0].set_title("Distance = 1 m", fontweight="bold")
    axarr[0].set_ylabel('')
    axarr[0].set_xlabel('RSSI (dBm)')
    axarr[0].set_xlim(-110, -50)

    sns.pointplot(x="RSSI (dBm)",
                  y="Phone Model",
                  order=models,
                  hue="Time of Day",
                  hue_order=['Morning', 'Noon', 'Afternoon', 'Night'],
                  markers=['*', '^', '.', 'x'],
                  data=df[(df['Distance (m)'] == 10.0)],
                  join=False,
                  ci=None,
                  ax=axarr[1])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    axarr[1].legend_.remove()  # (frameon=True, framealpha=1, edgecolor='0')
    axarr[1].set_title("Distance = 10 m", fontweight="bold")
    axarr[1].set_ylabel('')
    axarr[1].set_xlabel('RSSI (dBm)')
    axarr[1].set_xlim(-110, -50)

    fig.tight_layout()
    if not os.path.exists(SAVEPATH):
        os.makedirs(SAVEPATH)
    fig.savefig(SAVEPATH + 'rssi_distance_time.pdf')
Exemplo n.º 3
0
def get_df(path):
    scan_modes = ["balanced"]
    frames = []
    for mode in scan_modes:
        frame = util.process_folder(path,
                                    filter_scan_mode=mode,
                                    filter_benchmark="gatt")
        frames.append(frame)
    all_frames = pd.concat(frames)
    return all_frames
Exemplo n.º 4
0
def plot_hl_latency(path):
    fig, ax1 = plt.subplots()
    scan_modes = ["balanced"]
    frames = []
    for mode in scan_modes:
        frame = util.process_folder(path,
                                    filter_scan_mode=mode,
                                    filter_replicas=None,
                                    filter_benchmark='first')
        frames.append(frame)
    all_frames = pd.concat(frames)
    # TODO this does not work dependent on pandas version..
    all_frames["Advertising Interval (ms)"] = all_frames[
        "Advertising Interval (ms)"].astype('category')
    all_frames["Phone Model"] = all_frames["Phone Model"].astype("category")
    all_frames = all_frames.rename(
        columns={'OS Timestamp (ms)': 'OS Timestamp (s)'})
    all_frames["OS Timestamp (s)"] = all_frames["OS Timestamp (s)"] / 1000.0
    all_frames = all_frames[(all_frames['Advertising Interval (ms)'] == 1280)]

    sns.barplot(y="Phone Model", x="OS Timestamp (s)", data=all_frames, ax=ax1)
    ax1.set_ylabel("")
    ax1.set_xlabel('Mean Time (s)')
    return fig, ax1
Exemplo n.º 5
0
def plot_rssi():
    # get dataframe for RSSI
    path_rssi = "../data/rssi"
    df_rssi = util.process_folder(path_rssi, filter_benchmark='rssi')
    #    df_rssi["Phone Model"] = df_rssi["Phone Model"].astype("category")
    df_rssi = df_rssi[(df_rssi['RSSI (dBm)'] < 0)]
    id_map = {}  # {phone model: [next_id, {old id : new id}}]
    # add phone id
    df_rssi = df_rssi[(df_rssi["Phone Model"].isin(
        ["Asus Nexus 7", "LG Nexus 5", "Motorola MotoE2", "Motorola Nexus 6"]))
                      & (df_rssi['Device ID'] != 'unknown')]
    df_rssi['Phone ID'] = ""
    df_rssi.index = range(len(df_rssi))
    for index, row in df_rssi.iterrows():
        model = row['Phone Model']
        if model not in id_map:
            id_map[model] = [1, {}]
        device = row['Device ID']
        if device not in id_map[model][1]:
            id_map[model][1][device] = "Phone " + str(id_map[model][0])
            id_map[model][0] += 1
        df_rssi.set_value(index, 'Phone ID', id_map[model][1][device])

    # get dataframe for latency
    path_latency = "../data/soc/adv-prr-latency/1280ms"
    df_latency = util.process_folder(path_latency,
                                     filter_scan_mode="balanced",
                                     filter_replicas=None,
                                     filter_benchmark='first')
    # df_latency["Phone Model"] = df_latency["Phone Model"].astype("category")
    df_latency = df_latency.rename(
        columns={'OS Timestamp (ms)': 'OS Timestamp (s)'})
    df_latency["OS Timestamp (s)"] = df_latency["OS Timestamp (s)"] / 1000.0
    # add phone id
    df_latency = df_latency[(df_latency["Phone Model"].isin(
        ["Asus Nexus 7", "LG Nexus 5", "Motorola MotoE2", "Motorola Nexus 6"]))
                            & (df_latency['Device ID'] != 'unknown')]
    df_latency['Phone ID'] = ""
    df_latency.index = range(len(df_latency))
    for index, row in df_latency.iterrows():
        model = row['Phone Model']
        if model not in id_map:
            id_map[model] = [1, {}]
        device = row['Device ID']
        if device not in id_map[model][1]:
            id_map[model][1][device] = "Phone " + str(id_map[model][0])
            id_map[model][0] += 1
        df_latency.set_value(index, 'Phone ID', id_map[model][1][device])

    print df_rssi["Phone Model"].unique()
    print df_latency["Phone Model"].unique()
    print id_map

    # figure 12
    # sns.set_context("paper")
    # sns.set(style="whitegrid", font_scale=1.5)
    fig, axarr = plt.subplots(1, 2, sharey='row', figsize=(10, 4))
    # fig.subplots_adjust(wspace=0, hspace=0)
    print df_rssi[(df_rssi['Distance (m)'] == 1.0)]
    hue_order = sorted(df_rssi['Phone ID'].unique())
    df_rssi["Phone Model"] = df_rssi["Phone Model"].astype("category")
    sns.boxplot(x="RSSI (dBm)",
                y="Phone Model",
                data=df_rssi[(df_rssi['Distance (m)'] == 1.0)],
                hue="Phone ID",
                hue_order=hue_order,
                ax=axarr[0])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    axarr[0].legend_.remove()  # (frameon=True, framealpha=1, edgecolor='0')
    axarr[0].set_title("Distance = 1 m", fontweight="bold")
    axarr[0].set_ylabel('')
    axarr[0].set_xlabel('RSSI (dBm)')
    axarr[0].set_xlim(-110, -50)

    df_latency["Phone Model"] = df_latency["Phone Model"].astype("category")
    sns.boxplot(x="OS Timestamp (s)",
                y="Phone Model",
                data=df_latency,
                hue="Phone ID",
                hue_order=hue_order,
                ax=axarr[1])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    axarr[1].legend_.remove()  # (frameon=True, framealpha=1, edgecolor='0')
    axarr[1].set_title("Scan Mode = balanced", fontweight="bold")
    axarr[1].set_ylabel('')
    axarr[1].set_xlabel('OS Timestamp (s)')
    # axarr[1].set_xlim(-110, )

    fig.tight_layout()
    if not os.path.exists(SAVEPATH):
        os.makedirs(SAVEPATH)
    fig.savefig(SAVEPATH + 'between_model.pdf')
Exemplo n.º 6
0
def plot_rssi():
    path = "../data/rssi"
    df = util.process_folder(path, filter_benchmark='rssi')
    # df = df[(df["Phone Model"] == "Motorola MotoE2")]
    df = df[(df['RSSI (dBm)'] < 0)]
    df["Phone Model"] = df["Phone Model"].astype("category")
    d = get_distances(df["RSSI (dBm)"])
    df["Estimated Distance (m)"] = d

    df = df[(df['Distance (m)'] == 1.0) | (df['Distance (m)'] == 05.0) |
            (df['Distance (m)'] == 10.0) | (df['Distance (m)'] == 20.0)]

    #    # figure 6 all distances
    #    plt.figure(figsize=(10, 4))
    #    g = sns.pointplot(x="Distance (m)", y="RSSI (dBm)", hue="Phone Model", markers=['.','v','^','<','>','*','s','h','+','d'], data=df, ci=None) #, size=10, aspect=2.0, legend=False)
    #    # Now add the legend with some customizations.
    #    #plt.legend(bbox_to_anchor=(0.45, -0.1), loc="upper center", ncol=4)
    #    #ax.set_title("Distance = 1 m", fontweight="bold")
    #    plt.ylabel('RSSI (dBm)')
    #    plt.xlabel('Distance (m)')
    #
    #    # ref: http://stackoverflow.com/a/10154763/1843698
    #    handles, labels = plt.gca().get_legend_handles_labels()
    #    lgd = plt.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.45,-0.2), ncol=5, fontsize=10)
    #    g.get_figure().savefig(SAVEPATH+'rssi-line-distance.pdf', bbox_extra_artists=(lgd,), bbox_inches='tight')
    # figure 1b 4 distances
    plt.figure(figsize=(10, 5))
    markers = ['p', 'v', '^', '<', '>', '*', 's', 'h', 'P', 'd']
    linestyles = ['-', '--', '-.', ':']
    models = [
        'Asus Nexus 7', 'HTC One M9', 'LG G3', 'LG Nexus 4', 'LG Nexus 5',
        'LG Nexus 5X', 'Motorola Moto G', 'Motorola MotoE2',
        'Motorola Nexus 6', 'Samsung Galaxy S3'
    ]
    for i in range(len(models)):
        m = models[i]
        df_sub = df[(df['Phone Model'] == m)]
        grouped = df_sub.groupby('Distance (m)')['RSSI (dBm)'].mean()
        print m
        print markers[i]
        grouped.plot(x='Distance (m)',
                     y="RSSI (dBm)",
                     marker=markers[i],
                     linestyle=linestyles[i % len(linestyles)],
                     label=m)  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    # plt.legend(bbox_to_anchor=(0.45, -0.1), loc="upper center", ncol=4)
    # ax.set_title("Distance = 1 m", fontweight="bold")
    plt.ylabel('RSSI (dBm)')
    plt.xlabel('Distance (m)')
    plt.xlim(0, 21)

    # ref: http://stackoverflow.com/a/10154763/1843698
    handles, labels = plt.gca().get_legend_handles_labels()
    lgd = plt.legend(handles,
                     labels,
                     loc='center right',
                     bbox_to_anchor=(1.43, 0.5))
    if not os.path.exists(SAVEPATH):
        os.makedirs(SAVEPATH)
    plt.savefig(SAVEPATH + 'rssi_vs_true_dist.pdf',
                bbox_extra_artists=(lgd, ),
                bbox_inches='tight')
Exemplo n.º 7
0
def plot_prr(path):
    frames = []
    for path in paths:
        frame = util.process_folder(path,
                                    filter_replicas=1,
                                    filter_benchmark="prr")
        frames.append(frame)
    all_frames = pd.concat(frames)
    all_frames["Advertising Interval (ms)"] = \
        all_frames["Advertising Interval (ms)"].astype('category')
    all_frames["Phone Model"] = all_frames["Phone Model"].astype('category')
    all_frames["SoC"] = all_frames["SoC"].astype('category')
    all_frames["API Version"] = all_frames["API Version"].astype('category')
    all_frames["WiFi State"] = all_frames["WiFi State"].astype('category')

    all_frames = all_frames[(all_frames["Advertising Interval (ms)"] == 160)]
    all_frames = all_frames[(all_frames["Scan Mode"] == "balanced")]
    wifi_idle = all_frames[(all_frames["WiFi State"] == "on")]

    nexus5 = wifi_idle[(wifi_idle["Phone Model"] == "LG Nexus 5")]
    nexus6 = wifi_idle[(wifi_idle["Phone Model"] == "Motorola Nexus 6")]
    nexus7 = wifi_idle[(wifi_idle["Phone Model"] == "Asus Nexus 7")]

    fig, axarr = plt.subplots(1, 3, sharey=True)
    fig.subplots_adjust(wspace=0, hspace=0)
    sns.barplot(x='PRR (%)', y="API Version", data=nexus7, ax=axarr[0])
    axarr[0].set_title("Asus Nexus 7", fontweight="bold")
    axarr[0].set_xlabel('Mean PRR (%)')
    axarr[0].set_ylabel('API Version')
    axarr[0].set_xlim(0, 100)

    print "\n"
    # add numbers on top of bars
    for p in axarr[0].patches:
        print "width: ", p.get_width()
        print "y: ", p.get_y()
        if math.isnan(p.get_width()):
            axarr[0].annotate('Not Available', (10, p.get_y() + 0.5))
        else:
            axarr[0].annotate('%.2f' % p.get_width(),
                              (p.get_width() + 5, p.get_y() + 0.5))

    sns.barplot(x='PRR (%)', y="API Version", data=nexus5, ax=axarr[1])
    axarr[1].set_title("LG Nexus 5", fontweight="bold")
    axarr[1].set_ylabel('')
    axarr[1].set_xlabel('Mean PRR (%)')
    axarr[1].set_xlim(0, 100)

    print "\n"
    # add numbers on top of bars
    for p in axarr[1].patches:
        print "width: ", p.get_width()
        print "y: ", p.get_y()
        if math.isnan(p.get_width()):
            axarr[1].annotate('Not Available', (10, p.get_y() + 0.5))

    sns.barplot(x='PRR (%)', y="API Version", data=nexus6, ax=axarr[2])
    axarr[2].set_title("Motorola Nexus 6", fontweight="bold")
    axarr[2].set_ylabel('')
    axarr[2].set_xlabel('Mean PRR (%)')
    axarr[2].set_xlim(0, 100)

    print "\n"
    # add numbers on top of bars
    for p in axarr[2].patches:
        print "width: ", p.get_width()
        print "y: ", p.get_y()
        if math.isnan(p.get_width()):
            axarr[2].annotate('Not Available', (10, p.get_y() + 0.5))


#        else:
#            axarr[2].annotate('%.2f' % p.get_width(), (p.get_width() + 5, p.get_y()+0.5))

    return fig, axarr
Exemplo n.º 8
0
def plot_latency(path):
    fig, ax1 = plt.subplots()
    scan_modes = ["low_latency"]
    frames = []
    for mode in scan_modes:
        frame = util.process_folder(path,
                                    filter_scan_mode=mode,
                                    filter_replicas=None,
                                    filter_benchmark='first')
        frames.append(frame)
    all_frames = pd.concat(frames)
    # TODO this does not work dependent on pandas version..
    all_frames["Advertising Interval (ms)"] = all_frames[
        "Advertising Interval (ms)"].astype('category')
    all_frames["Phone Model"] = all_frames["Phone Model"].astype("category")
    all_frames["SoC"] = all_frames["SoC"].astype('category')
    all_frames = all_frames.rename(
        columns={'OS Timestamp (ms)': 'OS Timestamp (s)'})
    all_frames["OS Timestamp (s)"] = all_frames["OS Timestamp (s)"] / 1000.0
    all_frames = all_frames[(all_frames['Advertising Interval (ms)'] == 1280)]

    df = all_frames
    soc_list = df["SoC"].unique()
    colors = sns.color_palette("colorblind", len(soc_list))
    color_dict = dict(zip(soc_list, colors))
    tmp = df.drop_duplicates("Phone Model")
    tmp["color"] = tmp["SoC"].map(color_dict)
    soc_palette = dict(zip(tmp["Phone Model"], tmp["color"]))

    models = [
        'Samsung Galaxy S3', 'LG Nexus 5X', 'Motorola Nexus 6', 'HTC One M9',
        'Motorola MotoE2', 'Motorola Moto G', 'LG Nexus 4', 'Asus Nexus 7',
        'LG Nexus 5', 'LG G3'
    ]
    models = models[::-1]
    ax = sns.boxplot(y="Phone Model",
                     x="OS Timestamp (s)",
                     palette=soc_palette,
                     order=models,
                     data=all_frames,
                     ax=ax1)
    ax1.set_ylabel('')

    boxes = ax.artists

    grouped = all_frames.groupby('Phone Model')
    socs = grouped['SoC'].agg(lambda x: x.value_counts().index[0])
    socs_set = socs.unique()
    socs_plot = [socs.loc[m] for m in models]
    hatches = ('/', '+', 'x', '\\', '|', 'o')
    boxs_legend = []
    socs_legend = []
    for i, box in enumerate(boxes):
        soc_index = socs_set.tolist().index(socs_plot[i])
        print soc_index
        # Set a different hatch for each box
        box.set_edgecolor('k')
        box.set_hatch(3 * hatches[soc_index])
        box.set_facecolor(colors[soc_index])
        if socs_plot[i] not in socs_legend:
            boxs_legend.append(box)
            socs_legend.append(socs_plot[i])
    socs_legend, boxs_legend = zip(*sorted(zip(socs_legend, boxs_legend)))
    ax.legend(boxs_legend,
              socs_legend,
              loc='center right',
              bbox_to_anchor=(1.35, 0.5))
    return fig, ax1
Exemplo n.º 9
0
def plot_rssi():
    path = "../data/rssi"
    df = util.process_folder(path, filter_benchmark='rssi')
    # df = df[(df["Phone Model"] == "Motorola MotoE2")]
    # sns.set_context("paper")
    df = df[(df['RSSI (dBm)'] < 0)]
    # sns.set_context("paper")
    # sns.set_style("whitegrid")
    df["Phone Model"] = df["Phone Model"].astype("category")
    # sns.set(style="whitegrid", font_scale=1)
    util.set_style(font_scale=1.7)
    util.set_colors()

    # figure 2b
    fig, axarr = plt.subplots(1, 2, sharey='row', figsize=(12, 5.5))
    # fig.subplots_adjust(wspace=0, hspace=0)

    models = [
        'Samsung Galaxy S3', 'LG Nexus 5X', 'Motorola Nexus 6', 'HTC One M9',
        'Motorola MotoE2', 'Motorola Moto G', 'LG Nexus 4', 'Asus Nexus 7',
        'LG Nexus 5', 'LG G3'
    ]
    models = models[::-1]
    grouped = df.groupby('Phone Model')
    socs = grouped['SoC'].agg(lambda x: x.value_counts().index[0])
    socs_set = socs.unique()
    socs_plot = [socs.loc[m] for m in models]
    hatches = ('/', '+', 'x', '\\', '|', 'o')
    colors = sns.color_palette("colorblind", len(socs_set))

    ax = sns.boxplot(x="RSSI (dBm)",
                     y="Phone Model",
                     data=df[(df['Distance (m)'] == 1.0)],
                     order=models,
                     ax=axarr[0])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    # axarr[0].legend(frameon=True, framealpha=1, edgecolor='0')
    axarr[0].set_title("Distance = 1 m", fontweight="bold")
    axarr[0].set_ylabel('')
    axarr[0].set_xlabel('RSSI (dBm)')
    axarr[0].set_xlim(-110, -50)

    for i, box in enumerate(ax.artists):
        soc_index = socs_set.tolist().index(socs_plot[i])
        # Set a different hatch for each box
        box.set_edgecolor('k')
        box.set_hatch(3 * hatches[soc_index])
        box.set_facecolor(colors[soc_index])

    ax = sns.boxplot(x="RSSI (dBm)",
                     y="Phone Model",
                     data=df[(df['Distance (m)'] == 10.0)],
                     order=models,
                     ax=axarr[1])  # , size=10, aspect=2.0, legend=False)
    # Now add the legend with some customizations.
    # axarr[1].legend(frameon=True, framealpha=1, edgecolor='0')
    axarr[1].set_title("Distance = 10 m", fontweight="bold")
    axarr[1].set_ylabel('')
    axarr[1].set_xlabel('RSSI (dBm)')
    axarr[1].set_xlim(-110, -50)

    boxs_legend = []
    socs_legend = []
    for i, box in enumerate(ax.artists):
        soc_index = socs_set.tolist().index(socs_plot[i])
        # Set a different hatch for each box
        box.set_edgecolor('k')
        box.set_hatch(3 * hatches[soc_index])
        box.set_facecolor(colors[soc_index])
        if socs_plot[i] not in socs_legend:
            boxs_legend.append(box)
            socs_legend.append(socs_plot[i])
    socs_legend, boxs_legend = zip(*sorted(zip(socs_legend, boxs_legend)))
    ax.legend(boxs_legend,
              socs_legend,
              loc='best',
              frameon=True,
              framealpha=1,
              edgecolor='0',
              fontsize=14)  # , bbox_to_anchor = (1.35, 0.5))
    fig.tight_layout()
    if not os.path.exists(SAVEPATH):
        os.makedirs(SAVEPATH)
    fig.savefig(SAVEPATH + 'rssi_distance_boxplot.pdf')
Exemplo n.º 10
0
def plot_prr(path):
    # scan_modes = ["low_power", "balanced","low_latency"]
    scan_modes = ["balanced"]
    frames = []
    for mode in scan_modes:
        frame = util.process_folder(path,
                                    filter_scan_mode=mode,
                                    filter_replicas=1,
                                    filter_benchmark="prr")
        frames.append(frame)
    all_frames = pd.concat(frames)
    all_frames["Advertising Interval (ms)"] = all_frames[
        "Advertising Interval (ms)"].astype('category')
    all_frames["Phone Model"] = all_frames["Phone Model"].astype('category')
    all_frames["SoC"] = all_frames["SoC"].astype('category')
    # hard code models so same chips stay together
    models = [
        'Samsung Galaxy S3', 'LG Nexus 5X', 'Motorola Nexus 6', 'HTC One M9',
        'Motorola MotoE2', 'Motorola Moto G', 'LG Nexus 4', 'Asus Nexus 7',
        'LG Nexus 5', 'LG G3'
    ]
    pos = np.arange(len(models)) + .5
    grouped = all_frames.groupby('Phone Model')
    vals = grouped['PRR (%)'].agg([np.mean, np.std])
    socs = grouped['SoC'].agg(lambda x: x.value_counts().index[0])
    socs_set = socs.unique()
    print socs

    vals_plot = [vals.loc[m, 'mean'] for m in models]
    errs_plot = [vals.loc[m, 'std'] for m in models]
    socs_plot = [socs.loc[m] for m in models]
    print vals_plot
    print errs_plot

    # get palette
    colors = sns.color_palette("colorblind", len(socs_set))

    # get patterns
    patterns = ('-', '+', 'x', '\\', '|', 'o', 'O', '.')

    fig, ax = plt.subplots(1)
    fig.subplots_adjust(wspace=0, hspace=0)
    bars = plt.barh(pos,
                    vals_plot,
                    xerr=errs_plot,
                    align='center',
                    edgecolor='k')
    bars_legend = []
    socs_legend = []
    for i in range(len(bars)):
        soc_index = socs_set.tolist().index(socs_plot[i])
        pattern = 3 * patterns[soc_index]
        color = colors[soc_index]
        bars[i].set_hatch(pattern)
        bars[i].set_facecolor(color)
        if socs_plot[i] not in socs_legend:
            bars_legend.append(bars[i])
            socs_legend.append(socs_plot[i])
    plt.yticks(pos, models)
    socs_legend, bars_legend = zip(*sorted(zip(socs_legend, bars_legend)))
    plt.legend(bars_legend,
               socs_legend,
               loc="upper right",
               frameon=True,
               framealpha=1,
               edgecolor='0')  # bbox_to_anchor = (1.37, 0.8))
    # ax.set_title("Scan Mode = balanced", fontweight="bold")
    ax.set_ylabel('')
    ax.set_xlabel('Mean PRR (%)')
    ax.set_xlim(0, 100)
    return fig, ax
Exemplo n.º 11
0
def plot_prr(path):
    frames = []
    for path in paths:
        frame = util.process_folder(path,
                                    filter_replicas=1,
                                    filter_benchmark="prr")
        frames.append(frame)
    all_frames = pd.concat(frames)
    print all_frames
    all_frames["Advertising Interval (ms)"] = \
        all_frames["Advertising Interval (ms)"].astype('category')
    all_frames["Phone Model"] = all_frames["Phone Model"].astype('category')
    all_frames["SoC"] = all_frames["SoC"].astype('category')
    all_frames["WiFi State"] = all_frames["WiFi State"].astype('category')

    all_frames = all_frames[(all_frames["Advertising Interval (ms)"] == 160)]
    all_frames = all_frames[(all_frames["Scan Mode"] == "balanced")]

    wifion = all_frames[(all_frames["WiFi State"] == "on")]
    print wifion
    wifiactive = all_frames[(all_frames["WiFi State"] == "active")]
    print wifiactive
    fig, axarr = plt.subplots(1, 2, sharey='row', figsize=(10, 4))

    # fig.subplots_adjust(wspace=0, hspace=0)
    models = [
        'Samsung Galaxy S3', 'LG Nexus 5X', 'Motorola Nexus 6', 'HTC One M9',
        'Motorola MotoE2', 'Motorola Moto G', 'LG Nexus 4', 'Asus Nexus 7',
        'LG Nexus 5', 'LG G3'
    ]
    models = models[::-1]
    bars = sns.barplot(x='PRR (%)',
                       y="Phone Model",
                       data=wifion,
                       order=models,
                       ax=axarr[0])
    #    axarr[0].legend_.remove() #(frameon=True, framealpha=1, edgecolor='0')
    axarr[0].set_title("WiFi Idle", fontweight="bold")
    axarr[0].set_ylabel('')
    axarr[0].set_xlabel('Mean PRR (%)')
    axarr[0].set_xlim(0, 100)

    grouped = wifion.groupby('Phone Model')
    socs = grouped['SoC'].agg(lambda x: x.value_counts().index[0])
    socs_set = socs.unique()
    socs_plot = [socs.loc[m] for m in models]
    hatches = ('/', '+', 'x', '\\', '|', 'o')
    colors = sns.color_palette("colorblind", len(socs_set))

    bars_legend = []
    socs_legend = []
    for i, bar in enumerate(bars.patches):
        soc_index = socs_set.tolist().index(socs_plot[i])
        # Set a different hatch for each bar
        bar.set_edgecolor('k')
        bar.set_hatch(3 * hatches[soc_index])
        bar.set_facecolor(colors[soc_index])
        if socs_plot[i] not in socs_legend:
            bars_legend.append(bar)
            socs_legend.append(socs_plot[i])
    # socs_legend, bars_legend = zip(*sorted(zip(socs_legend, bars_legend)))
    # axarr[0].legend(bars_legend, socs_legend, loc='center right', frameon=True, framealpha=1, edgecolor='0')

    bars = sns.barplot(x='PRR (%)',
                       y="Phone Model",
                       data=wifiactive,
                       order=models,
                       ax=axarr[1])
    axarr[1].set_title("WiFi Active", fontweight="bold")
    axarr[1].set_ylabel('')
    axarr[1].set_xlabel('Mean PRR (%)')
    axarr[1].set_xlim(0, 100)

    bars_legend = []
    socs_legend = []
    for i, bar in enumerate(bars.patches):
        soc_index = socs_set.tolist().index(socs_plot[i])
        # Set a different hatch for each bar
        bar.set_edgecolor('k')
        bar.set_hatch(3 * hatches[soc_index])
        bar.set_facecolor(colors[soc_index])
        if socs_plot[i] not in socs_legend:
            bars_legend.append(bar)
            socs_legend.append(socs_plot[i])
    socs_legend, bars_legend = zip(*sorted(zip(socs_legend, bars_legend)))
    axarr[1].legend(bars_legend,
                    socs_legend,
                    loc='center right',
                    frameon=True,
                    framealpha=1,
                    edgecolor='0')

    return fig, axarr