Exemplo n.º 1
0
def main(model, metrics):
    if metrics:
        old_metrics = {}
        new_metrics = {}
        files = f'data/predict/{model}/*_0000.nii.gz'
    files = f'data/predict/{model}/*/*.nii.gz'

    for file in glob.glob(files):
        sample, i = os.path.basename(file).split('_')
        i = i[:4]
        header = util.header(file)
        volume = util.read_vol(file)
        if metrics:
            label = util.read_vol(
                glob.glob(f'data/labels/{sample}/{sample}_0_all_brains.nii.gz')
                [0])
            old_metrics[sample] = util.dice_coef(label, volume)

        n = 2 if sample in constants.TWINS else 1
        volume = remove_artifacts(volume, n)

        if metrics:
            new_metrics[sample] = util.dice_coef(label, volume)

        os.makedirs(f'data/predict_cleaned/{model}/{sample}', exist_ok=True)
        util.save_vol(
            volume,
            f'data/predict_cleaned/{model}/{sample}/{sample}_{i}.nii.gz',
            header)

    if metrics:
        print('before: ', old_metrics)
        print('after: ', new_metrics)
Exemplo n.º 2
0
    def predict(self, generator, subj_dirs=False):

        n = len(generator)
        for i in range(n):

            #TODO: why is this hard coded here.
            input_file = generator.input_files[i]

            subj_dir = input_file.split("/")[-2]

            path = f'{self.output_location}/{subj_dir}'
            os.makedirs(path, exist_ok=True)

            fname = input_file.split('/')[-1]
            header = util.header(input_file)

            #vol = nib.load(input_file)
            vol = generator[i]
            #vol = vol[0,:,:,:]
            sub_vols, sub_codes = simple_preproc.get_subvolumes(
                vol[0], self.input_size)
            preds = []
            for sub_vol in sub_vols:
                preds.append(
                    self.model.predict(sub_vol[np.newaxis, :, :, :, :])[0])
            pred = simple_preproc.sub_vols_to_original_shape(
                preds, sub_codes, vol.shape[1:])
            util.save_vol(
                pred,
                os.path.join(path, fname),
            )
Exemplo n.º 3
0
 def predict(self, generator, path):
     preds = self.model.predict_generator(generator, verbose=1)
     # FIXME
     for i in range(preds.shape[0]):
         fname = generator.inputs[i].split('/')[-1]
         header = util.header(generator.inputs[i])
         util.save_vol(uncrop(preds[i], generator.shape),
                       os.path.join(path, fname), header)
Exemplo n.º 4
0
def save_prediction(pred, input_file, tile, path, scale=False):
    fname = input_file.split('/')[-1]
    sample = fname.split('_')[0]
    path = os.path.join(path, sample)
    os.makedirs(path, exist_ok=True)
    shape = util.shape(input_file)
    header = util.header(input_file)
    vol = process.postprocess(pred, shape, resize=True, tile=tile)
    util.save_vol(vol, os.path.join(path, fname), header, scale)
    print(fname, flush=True)
Exemplo n.º 5
0
def save_predictions(preds, generator, path, scale=False):
    os.makedirs(path, exist_ok=True)

    if generator.tile_inputs:
        preds = np.reshape(preds, (-1, 8) + preds.shape[1:])

    for i in range(preds.shape[0]):
        input_file = generator.input_files[i]
        fname = input_file.split('/')[-1]
        header = util.header(input_file)
        shape = util.shape(input_file)
        volume = process.postprocess(preds[i],
                                     shape,
                                     resize=True,
                                     tile=generator.tile_inputs)
        util.save_vol(volume, os.path.join(path, fname), header, scale)
Exemplo n.º 6
0
def main(model):
    folder = options.sample if options.sample else '*'
    files = f'data/predict/{model}/{folder}/*.nii.gz'

    for file in glob.glob(files):
        sample, i = os.path.basename(file).split('_')
        i = i[:4]
        header = util.header(file)
        volume = util.read_vol(file)

        n = 2 if sample in constants.TWINS else 1
        volume = remove_artifacts(volume, n)

        os.makedirs(f'data/predict_cleaned/{model}/{sample}', exist_ok=True)
        util.save_vol(
            volume,
            f'data/predict_cleaned/{model}/{sample}/{sample}_{i}.nii.gz',
            header)
Exemplo n.º 7
0
def dilate(mask, sample, iterations=4):
    struct = sp.generate_binary_structure(3, 1)
    dil = sp.binary_dilation(mask, iterations=iterations)
    util.save_vol(dil, '{}mask/{}.nii.gz'.format(registration_dir, sample))
    return dil
Exemplo n.º 8
0
import glob
import numpy as np
import util

for sample in [
        '010918L', '010918S', '012115', '013018L', '013018S', '013118L',
        '013118S', '021015', '021218L', '021218S', '022318L', '022318S',
        '022415', '022618', '030217', '030315', '031317L', '031317T', '031516',
        '031615', '031616', '031716', '032217', '032318a', '032318b',
        '032318c', '032318d', '032818', '040218', '040417'
]:
    files = glob.glob('data/labels/{}/{}_0_*_brain.nii.gz'.format(
        sample, sample))

    volume = np.zeros(
        util.shape('data/raw/{}/{}_0.nii.gz'.format(sample, sample)))
    header = util.header(files[0])
    for file in files:
        volume += util.read_vol(file)

    util.save_vol(
        volume, 'data/labels/{}/{}_0_all_brains.nii.gz'.format(sample, sample),
        header)
Exemplo n.º 9
0
def main(sample, order):
    files = sorted(glob.glob(f'data/nifti/{sample}/*.nii.gz'))
    vols = np.concatenate([util.read_vol(file) for file in files], axis=-1)
    if vols.shape[0] == vols.shape[1] == vols.shape[2]:
        axis = int(input(f'shape: {vols.shape}\n> '))
    elif vols.shape[0] == vols.shape[1]:
        axis = 2
    elif vols.shape[0] == vols.shape[2]:
        axis = 1
    elif vols.shape[1] == vols.shape[2]:
        axis = 0
    else:
        axis = int(input(f'shape: {vols.shape}\n> '))
    vols = np.moveaxis(vols, axis, 0)
    shape = vols.shape

    even_i = np.arange(0, shape[0], 2)
    even_slices = vols[::2, ...]
    even_interpolator = interp1d(even_i, even_slices, kind='linear', axis=0)
    odd_i = np.arange(1, shape[0], 2)
    odd_slices = vols[1::2, ...]
    odd_interpolator = interp1d(odd_i, odd_slices, kind='linear', axis=0)

    if shape[0] % 2 == 0:
        evens = even_interpolator(np.arange(0, shape[0] - 1))
        odds = odd_interpolator(np.arange(1, shape[0]))
        evens = np.concatenate((evens, evens[-1:, ...]))
    else:
        evens = even_interpolator(np.arange(0, shape[0]))
        odds = odd_interpolator(np.arange(1, shape[0] - 1))
        odds = np.concatenate((odds, odds[-1:, ...]))

    odds = np.concatenate((odds[:1, ...], odds))

    new_shape = list(shape)
    new_shape[-1] *= 2
    series = np.zeros(new_shape)

    if order is None:
        import matplotlib.pyplot as plt

        even_1 = evens[shape[0] // 3, shape[1] // 2, ...]
        even_2 = evens[shape[0] * 2 // 3, shape[1] // 2, ...]
        odd_1 = odds[shape[0] // 3, shape[1] // 2, ...]
        odd_2 = odds[shape[0] * 2 // 3, shape[1] // 2, ...]
        even_img_1 = np.zeros((shape[2], shape[3] * 2))
        even_img_1[:, ::2] = even_1
        even_img_1[:, 1::2] = odd_1
        even_img_2 = np.zeros((shape[2], shape[3] * 2))
        even_img_2[:, ::2] = even_2
        even_img_2[:, 1::2] = odd_2
        odd_img_1 = np.zeros((shape[2], shape[3] * 2))
        odd_img_1[:, ::2] = odd_1
        odd_img_1[:, 1::2] = even_1
        odd_img_2 = np.zeros((shape[2], shape[3] * 2))
        odd_img_2[:, ::2] = odd_2
        odd_img_2[:, 1::2] = even_2

        img_1 = np.concatenate((odd_img_1, even_img_1), axis=0)
        img_2 = np.concatenate((odd_img_2, even_img_2), axis=0)

        fig = plt.figure(figsize=(9, 9))
        fig.add_subplot(2, 1, 1)
        plt.imshow(img_1)
        plt.axis('off')
        fig.add_subplot(2, 1, 2)
        plt.imshow(img_2)
        plt.axis('off')
        plt.suptitle(sample)
        plt.show(block=False)

        order = input('0. 3D\n1. odd\n2. even\n> ')

        if order == '0':
            even = evens[shape[0] // 2, ...]
            odd = odds[shape[0] // 2, ...]
            even_img = np.zeros((shape[1], shape[2], shape[3] * 2))
            even_img[..., ::2] = even
            even_img[..., 1::2] = odd
            odd_img = np.zeros((shape[1], shape[2], shape[3] * 2))
            odd_img[..., ::2] = odd
            odd_img[..., 1::2] = even

            temp_folder = 'data/temp'
            os.makedirs(temp_folder, exist_ok=True)
            util.save_vol(even_img, temp_folder + 'even.nii.gz')
            util.save_vol(odd_img, temp_folder + 'odd.nii.gz')
            os.system(f'open {temp_folder}/even.nii.gz')
            os.system(f'open {temp_folder}/odd.nii.gz')
            order = input('1. odd\n2. even\n> ')

        plt.close()

    if order == '1' or order == 'o':
        series[..., ::2] = odds
        series[..., 1::2] = evens
    elif order == '2' or order == 'e':
        series[..., ::2] = evens
        series[..., 1::2] = odds
    else:
        raise ValueError('Must be even or odd slice.')

    series = np.moveaxis(series, 0, axis)

    new_folder = f'data/raw/{sample}/'
    os.makedirs(new_folder, exist_ok=True)
    for i in range(new_shape[-1]):
        util.save_vol(series[..., i],
                      new_folder + sample + f'_{str(i).zfill(4)}.nii.gz')
Exemplo n.º 10
0
def main(folder, volume):
    files = glob.glob(folder + '*.nii.gz')
    vols = np.concatenate([util.read_vol(file) for file in files], axis=-1)
    if vols.shape[0] == vols.shape[1] == vols.shape[2]:
        axis = int(input('shape: {}\n> '.format(vols.shape)))
    elif vols.shape[0] == vols.shape[1]:
        axis = 2
    elif vols.shape[0] == vols.shape[2]:
        axis = 1
    elif vols.shape[1] == vols.shape[2]:
        axis = 0
    else:
        axis = int(input('shape: {}\n> '.format(vols.shape)))
    vols = np.moveaxis(vols, axis, 0)
    shape = vols.shape

    even_i = np.arange(0, shape[0], 2)
    even_slices = vols[::2, ...]
    even_interpolator = interp1d(even_i, even_slices, kind='linear', axis=0)
    odd_i = np.arange(1, shape[0], 2)
    odd_slices = vols[1::2, ...]
    odd_interpolator = interp1d(odd_i, odd_slices, kind='linear', axis=0)

    if shape[0] % 2 == 0:
        evens = even_interpolator(np.arange(0, shape[0] - 1))
        odds = odd_interpolator(np.arange(1, shape[0]))
        evens = np.concatenate((evens, evens[np.newaxis, -1, ...]))
    else:
        evens = even_interpolator(np.arange(0, shape[0]))
        odds = odd_interpolator(np.arange(1, shape[0] - 1))
        odds = np.concatenate((odds, odds[np.newaxis, -1, ...]))

    odds = np.concatenate((np.zeros([
        1,
    ] + list(shape[1:])), odds))

    if volume:
        even_1 = evens[shape[0] // 3, ...]
        even_2 = evens[shape[0] * 2 // 3, ...]
        odd_1 = odds[shape[0] // 3, ...]
        odd_2 = odds[shape[0] * 2 // 3, ...]
        even_img_1 = np.zeros((shape[1], shape[2], shape[3] * 2))
        even_img_1[..., ::2] = even_1
        even_img_1[..., 1::2] = odd_1
        even_img_2 = np.zeros((shape[1], shape[2], shape[3] * 2))
        even_img_2[..., ::2] = even_2
        even_img_2[..., 1::2] = odd_2
        odd_img_1 = np.zeros((shape[1], shape[2], shape[3] * 2))
        odd_img_1[..., ::2] = odd_1
        odd_img_1[..., 1::2] = even_1
        odd_img_2 = np.zeros((shape[1], shape[2], shape[3] * 2))
        odd_img_2[..., ::2] = odd_2
        odd_img_2[..., 1::2] = even_2

        temp_folder = 'data/temp/'
        os.makedirs(temp_folder, exist_ok=True)
        util.save_vol(even_img_1, temp_folder + 'even_1.nii.gz')
        util.save_vol(even_img_2, temp_folder + 'even_2.nii.gz')
        util.save_vol(odd_img_1, temp_folder + 'odd_1.nii.gz')
        util.save_vol(odd_img_2, temp_folder + 'odd_2.nii.gz')
    else:
        even_1 = evens[shape[0] // 3, shape[1] // 2, ...]
        even_2 = evens[shape[0] * 2 // 3, shape[1] // 2, ...]
        odd_1 = odds[shape[0] // 3, shape[1] // 2, ...]
        odd_2 = odds[shape[0] * 2 // 3, shape[1] // 2, ...]
        even_img_1 = np.zeros((shape[2], shape[3] * 2))
        even_img_1[:, ::2] = even_1
        even_img_1[:, 1::2] = odd_1
        even_img_2 = np.zeros((shape[2], shape[3] * 2))
        even_img_2[:, ::2] = even_2
        even_img_2[:, 1::2] = odd_2
        odd_img_1 = np.zeros((shape[2], shape[3] * 2))
        odd_img_1[:, ::2] = odd_1
        odd_img_1[:, 1::2] = even_1
        odd_img_2 = np.zeros((shape[2], shape[3] * 2))
        odd_img_2[:, ::2] = odd_2
        odd_img_2[:, 1::2] = even_2

        fig = plt.figure(figsize=(16, 8))
        fig.add_subplot(2, 2, 1)
        plt.imshow(odd_img_1)
        plt.axis('off')
        plt.title('odd')
        fig.add_subplot(2, 2, 2)
        plt.imshow(even_img_1)
        plt.axis('off')
        plt.title('even')
        fig.add_subplot(2, 2, 3)
        plt.imshow(odd_img_2)
        plt.axis('off')
        plt.title('odd')
        fig.add_subplot(2, 2, 4)
        plt.imshow(even_img_2)
        plt.axis('off')
        plt.title('even')
        plt.show(block=False)

    order = input('1. odd\n2. even\n> ')
    plt.close()
    new_shape = list(shape)
    new_shape[-1] *= 2
    series = np.zeros(new_shape)

    if order == '1':
        series[..., ::2] = odds
        series[..., 1::2] = evens
    elif order == '2':
        series[..., ::2] = evens
        series[..., 1::2] = odds
    else:
        raise ValueError('Must be even or odd slice.')

    series = np.moveaxis(series, 0, axis)

    sample = folder.split('/')[2]
    new_folder = 'data/originals/{}/'.format(folder.split('/')[2])
    os.makedirs(new_folder, exist_ok=True)
    for i in range(new_shape[-1]):
        util.save_vol(series[..., i],
                      new_folder + sample + '_{}.nii.gz'.format(i))