Exemplo n.º 1
0
    def _tick(self,
              x,
              y,
              theta,
              urgency=0,
              keepFacing=False,
              relative=False,
              useAvoidance=True,
              extraObstacles=[]):
        #       LedOverride.override(LedOverride.leftEye, Constants.LEDColour.off)
        #       LedOverride.override(LedOverride.rightEye, Constants.LEDColour.off)
        self.keepFacing = keepFacing

        # Save destination for walkingTo
        self.world.b_request.walkingToX = int(x)
        self.world.b_request.walkingToY = int(y)
        if relative:
            new = FieldGeometry.addRrToRobot(Global.myPose(), x, y)
            self.world.b_request.walkingToX = int(new[0])
            self.world.b_request.walkingToY = int(new[1])

        # Convert everything to relative.
        if relative:
            vectorToTarget = Vector2D.Vector2D(x, y)
            facingTurn = theta
        else:
            for i in range(0, len(extraObstacles)):
                extraObstacles[
                    i] = FieldGeometry.globalPointToRobotRelativePoint(
                        extraObstacles[i])
            vectorToTarget, facingTurn = FieldGeometry.globalPoseToRobotRelativePose(
                Vector2D.Vector2D(x, y), theta)

        # always keep heading the same after avoidance
        facingTurn = MathUtil.normalisedTheta(facingTurn)
        targetHeading = MathUtil.normalisedTheta(vectorToTarget.heading())

        if useAvoidance:
            vectorToTarget = self.calculateDestinationViaObstacles(
                vectorToTarget, extraObstacles)

        # avoidance doesn't change which way robot's facing
        self.currentTarget = vectorToTarget
        forward = vectorToTarget.x
        left = vectorToTarget.y

        self.currentState.urgency = urgency
        # myPose = Global.myPose()
        # print "Pos: (%5.0f, %5.0f < %2.2f) - CurrTarget: (%5.0f, %5.0f < %2.2f) fac?%s, rel?%s, flt: (%4.0f, %4.0f < T%2.2f, F%2.2f)" % (
        #    myPose.x, myPose.y, degrees(myPose.theta), x, y, degrees(theta), "Y" if keepFacing else "N", "Y" if relative else "N", forward, left, degrees(targetHeading), degrees(facingTurn)
        # )
        self.currentState.tick(forward, left, targetHeading, facingTurn)
Exemplo n.º 2
0
    def getGoalPostsFromVision(self):
        """Add Goalposts From Vision.
 
       This takes vision goalposts and marks them as obstacles, so that hopefully we have one more point where we avoid
       them (beyond just sonar). The main issue is that these are unfiltered.
       """

        # If you see a goalpost -> Trigger a hysteresis item.
        # Else decay it.
        # If there is some hysteresis from a goalpost.
        # If you see it: Avoid the vision goalpost.
        # If you don't: Avoid the localisation one.
        posts = Global.getVisionPosts()
        posts_with_distance = []
        obstacles = []
        for post in posts:
            if not 0 < post.rr.distance < (Constants.GOAL_POST_ABS_Y * 2):
                # Sometimes posts are -1 in distance, I think when we don't trust our calculation. Don't try to avoid these.
                # Also don't include posts we see across the field / far away, byt ignoring any over 1 goal width away.
                continue
            dist = max(0, post.rr.distance - Constants.GOAL_POST_DIAMETER / 2)
            posts_with_distance.append(
                Vector2D.makeVector2DFromDistHeading(dist, post.rr.heading))
        if posts_with_distance:
            self.visionPostHys.resetMax()
        else:
            self.visionPostHys.down()
        #print "HysVal: %3d, PostsLen: %2d, DistPostsLen: %2d" % (self.visionPostHys.value, len(posts), len(posts_with_distance))
        if self.visionPostHys.value > 0:
            if posts_with_distance:
                # If we can see the posts, avoid the posts we're seeing.
                #print "Avoiding from vision"
                obstacles.extend(posts_with_distance)
                # print "adding posts from vision"
            else:
                # If we can't see a goalpost in vision, avoid the one in localisation (as an approximation so we don't
                # stop avoiding as we turn our head).
                robotPose = Global.myPose()
                for (obs_x, obs_y, obs_diam) in WalkToPointV2.FIXED_OBSTACLES:
                    # Calculate distance to the obstacle.
                    distance, heading = MathUtil.absToRr(
                        (robotPose.x, robotPose.y, robotPose.theta),
                        (obs_x, obs_y))
                    # print "Adding post from localisation: (%5d < %4.0f)" % (distance, degrees(heading))
                    distance = max(0, distance - obs_diam / 2)
                    obstacles.append(
                        Vector2D.makeVector2DFromDistHeading(
                            distance, heading))
                #print "Avoiding from localisation"
        #return obstacles
        return []
def calculateTimeToReachPose(myPos, myHeading, targetPos, targetHeading=None):
   toTarget = targetPos.minus(myPos)
   toTargetHeading = math.atan2(toTarget.y, toTarget.x)
   
   # How far we need to turn to point at the targetPos
   toTargetTurn = abs(MathUtil.normalisedTheta(toTargetHeading - myHeading))

   # The straightline distance to walk to the targetPos
   toTargetDistance = toTarget.length()

   # How far we need to turn once we get to the targetPos so that we are facing the targetHeading
   if targetHeading is None:
      toTargetHeadingTurn = 0.0
   else:
      toTargetHeadingTurn = abs(MathUtil.normalisedTheta(toTargetHeading - targetHeading))
      
   # approximate time it takes to avoid robots on the way
   avoidTime = 0
   if toTargetDistance > 400 :
       robots = Global.robotObstaclesList()
       for robot in robots:
           robotPos = Vector2D.makeVector2DCopy(robot.pos)
           toRobot = robotPos.minus(myPos)
           dist = toRobot.length()
           heading = abs(MathUtil.normalisedTheta(toRobot.heading() - toTargetHeading))
           # further away robots are less relevant
           distValue = min(1, dist / toTargetDistance)
           # robots aren't in the way are less relevant
           headingValue = min(1, heading / (math.pi/2))
           # heading is more relevant than distance, has enough weighting to revert striker bonus time
           combinedValue = (1 - distValue ** 4)*(1 - headingValue ** 2) * 3
           if combinedValue > avoidTime :
               avoidTime = combinedValue
   
   return toTargetTurn/TURN_RATE + toTargetDistance/WALK_RATE + toTargetHeadingTurn/CIRCLE_STRAFE_RATE + avoidTime
Exemplo n.º 4
0
def getBallIntersectionWithRobot(maintainCanSeeBall=True):
    intervalInSeconds = 1
    numSecondsForward = 1.0  # Estimate the ball position up to 1 second away
    numIterations = int(round(numSecondsForward / intervalInSeconds))
    FRICTION = 0.9  # friction per second
    FRICTION_PER_ITERATION = FRICTION**intervalInSeconds

    ballVel = Global.ballWorldVelHighConfidence()
    ballPos = Global.ballWorldPos()
    myHeading = Global.myHeading()

    # If he ball is moving slowly, just chase the ball directly
    if ballVel.isShorterThan(10.0):
        return ballPos

    # Dont bother chasing a moving ball if its quite close.
    if Global.ballDistance() < 600.0:
        return ballPos

    ballVel.scale(intervalInSeconds)

    robotPos = Global.myPos()

    interceptPoint = ballPos
    bestChasePoint = ballPos.clone()

    seconds = 0.0
    for i in xrange(0, numIterations):
        seconds += intervalInSeconds

        interceptPoint.add(ballVel)
        ballVel.scale(FRICTION_PER_ITERATION)

        toIntercept = interceptPoint.minus(robotPos)
        toInterceptHeading = math.atan2(toIntercept.y, toIntercept.x)

        # How far we need to turn to point at the interceptPoint
        toInterceptTurn = abs(
            MathUtil.normalisedTheta(toInterceptHeading - myHeading))

        timeToTurn = toInterceptTurn / TURN_RATE
        timeToWalk = toIntercept.length() / WALK_RATE

        canReach = (timeToTurn + timeToWalk) <= seconds

        # Calculate difference in heading to the current ball position and the intersect position
        # to make sure we don't turn too far and lose sight of the ball
        v1 = interceptPoint.minus(robotPos).normalised()
        v2 = ballPos.minus(robotPos).normalised()
        heading = v1.absThetaTo(v2)

        if maintainCanSeeBall and heading > math.radians(75):
            return bestChasePoint

        if canReach:
            return bestChasePoint
        else:
            bestChasePoint = Vector2D.makeVector2DCopy(interceptPoint)

    return bestChasePoint
def getBallIntersectionWithRobot(maintainCanSeeBall = True):
   intervalInSeconds = 1
   numSecondsForward = 1.0 # Estimate the ball position up to 1 second away
   numIterations = int(round(numSecondsForward / intervalInSeconds))
   FRICTION = 0.9 # friction per second
   FRICTION_PER_ITERATION = FRICTION ** intervalInSeconds

   ballVel = Global.ballWorldVelHighConfidence()
   ballPos = Global.ballWorldPos()
   myHeading = Global.myHeading()

   # If he ball is moving slowly, just chase the ball directly
   if ballVel.isShorterThan(10.0):
      return ballPos

   # Dont bother chasing a moving ball if its quite close.
   if Global.ballDistance() < 600.0:
      return ballPos

   ballVel.scale(intervalInSeconds)

   robotPos = Global.myPos()
   
   interceptPoint = ballPos
   bestChasePoint = ballPos.clone()

   seconds = 0.0
   for i in xrange(0, numIterations):
      seconds += intervalInSeconds

      interceptPoint.add(ballVel)
      ballVel.scale(FRICTION_PER_ITERATION)

      toIntercept = interceptPoint.minus(robotPos)
      toInterceptHeading = math.atan2(toIntercept.y, toIntercept.x)
   
      # How far we need to turn to point at the interceptPoint
      toInterceptTurn = abs(MathUtil.normalisedTheta(toInterceptHeading - myHeading))

      timeToTurn = toInterceptTurn / TURN_RATE
      timeToWalk = toIntercept.length() / WALK_RATE

      canReach = (timeToTurn + timeToWalk) <= seconds
      
      # Calculate difference in heading to the current ball position and the intersect position
      # to make sure we don't turn too far and lose sight of the ball
      v1 = interceptPoint.minus(robotPos).normalised()
      v2 = ballPos.minus(robotPos).normalised()
      heading = v1.absThetaTo(v2)

      if maintainCanSeeBall and heading > math.radians(75):
         return bestChasePoint

      if canReach:
         return bestChasePoint
      else:
         bestChasePoint = Vector2D.makeVector2DCopy(interceptPoint)

   return bestChasePoint
    def init(self, keepFacing=False, relative=False, useAvoidance=True):
        self.keepFacing = keepFacing
        self.relativeTarget = relative
        self.currentState = Initial(self)
        self.currentTarget = Vector2D.Vector2D(0, 0)
        self.target = None

        self.movingAvoidanceHistory = []

        self.avoidanceHys = Hysteresis(-10, 10)
        self.visionPostHys = Hysteresis(0, 10)
Exemplo n.º 7
0
 def getSonarObstacles():
     obstacles = []
     LEFT, RIGHT = 0, 1
     nearbyObject = [
         Sonar.hasNearbySonarObject(LEFT),
         Sonar.hasNearbySonarObject(RIGHT)
     ]
     sonarDebug = ""
     if nearbyObject[LEFT]:
         sonarDebug += " left"
         obstacles.append(
             Vector2D.makeVector2DFromDistHeading(Constants.ROBOT_DIAM,
                                                  radians(30)))
     if nearbyObject[RIGHT]:
         sonarDebug += " right"
         obstacles.append(
             Vector2D.makeVector2DFromDistHeading(Constants.ROBOT_DIAM,
                                                  -radians(30)))
     if sonarDebug:
         robot.say("sonar" + sonarDebug)
     return obstacles
    def _tick(self,
              x,
              y,
              theta,
              urgency=0,
              keepFacing=False,
              relative=False,
              useAvoidance=True,
              useOnlySonarAvoid=False):

        urgency = min(1.0, urgency)

        self.keepFacing = keepFacing

        # Convert everything to relative.
        if relative:
            vectorToTarget = Vector2D.Vector2D(x, y)
            facingTurn = theta
        else:
            vectorToTarget, facingTurn = FieldGeometry.globalPoseToRobotRelativePose(
                Vector2D.Vector2D(x, y), theta)

        facingTurn = MathUtil.normalisedTheta(facingTurn)

        self.currentTarget = vectorToTarget
        targetHeading = MathUtil.normalisedTheta(vectorToTarget.heading())

        # forward/left are used for final adjustments, rotate to mean pos after the turn is made
        if vectorToTarget.isShorterThan(400) or keepFacing:
            forward = vectorToTarget.x * cos(
                -facingTurn) - vectorToTarget.y * sin(-facingTurn)
            left = vectorToTarget.x * sin(
                -facingTurn) + vectorToTarget.y * cos(-facingTurn)
        else:
            forward = vectorToTarget.x
            left = vectorToTarget.y

        self.currentState.urgency = urgency
        self.currentState.tick(forward, left, targetHeading, facingTurn)
Exemplo n.º 9
0
def getSharedKickoffTarget():
    side_of_field = 1
    upfielder = getFirstOfRole(Constants.ROLE_UPFIELDER)
    if upfielder >= 0:
        upfielder_pos, _ = getTeammatePose(upfielder)
        side_of_field = math.copysign(1, upfielder_pos.y)
    else:
        midfielder = getFirstOfRole(Constants.ROLE_MIDFIELDER)
        if midfielder >= 0:
            midfielder_pos, _ = getTeammatePose(midfielder)
            side_of_field = math.copysign(1, midfielder_pos.y)

    # Now we have a side of field to kick to.
    return Vector2D.Vector2D(2500, 1200 * side_of_field)
Exemplo n.º 10
0
def calculateTimeToReachPose(myPos, myHeading, targetPos, targetHeading=None):
    toTarget = targetPos.minus(myPos)
    toTargetHeading = math.atan2(toTarget.y, toTarget.x)

    # How far we need to turn to point at the targetPos
    toTargetTurn = abs(normalisedTheta(toTargetHeading - myHeading))

    # The straightline distance to walk to the targetPos
    toTargetDistance = toTarget.length()

    # How far we need to turn once we get to the targetPos so
    # that we are facing the targetHeading
    if targetHeading is None:
        toTargetHeadingTurn = 0.0
    else:
        toTargetHeadingTurn = abs(
            normalisedTheta(toTargetHeading - targetHeading))

    # approximate time it takes to avoid robots on the way
    avoidTime = 0
    if toTargetDistance > 400:
        robots = Global.robotObstaclesList()
        for _robot in robots:
            robotPos = Vector2D.makeVector2DCopy(_robot.pos)
            toRobot = robotPos.minus(myPos)
            dist_squared = toRobot.length2()
            heading = abs(normalisedTheta(toRobot.heading() - toTargetHeading))
            # further away robots are less relevant
            distValue = min(1, dist_squared / toTargetDistance**2)
            # robots aren't in the way are less relevant
            headingValue = min(1, heading / (math.pi / 2))
            # heading is more relevant than distance,
            # has enough weighting to revert striker bonus time
            combinedValue = (1 - distValue**2) * (1 - headingValue**2) * 3
            if combinedValue > avoidTime:
                avoidTime = combinedValue

    return (toTargetTurn / TURN_RATE + toTargetDistance / WALK_RATE +
            toTargetHeadingTurn / CIRCLE_STRAFE_RATE + avoidTime)
Exemplo n.º 11
0
def get_bot_position(bot, traceable_object, tracker, samples=3, debug=False):
    xSamples = []
    ySamples = []

    for sample in range(samples):
        image = tracker.get_video_frame()
        timestamp = time.time()

        if sample > 0:  # ignore the first sample
            x, y = tracker._find_traceable_in_image(
                image, traceable_object)  # side effect: adds mask to tracker
            if x:
                xSamples.append(x)
            if y:
                ySamples.append(y)

            traceable_object.add_tracking(Vector2D(x, y), timestamp)

    if debug:
        display_current_view(tracker)
    print "{} | {} ".format(xSamples, ySamples)

    return (sum(xSamples) / len(xSamples)), (sum(ySamples) / len(ySamples))
Exemplo n.º 12
0
def angleToGoalRight(absCoord):
    phi = Vector2D.angleBetween(ENEMY_GOAL_INNER_RIGHT,
                                Vector2D.makeVector2DCopy(absCoord))
    return MathUtil.normalisedTheta(phi)
Exemplo n.º 13
0
def angleToOwnGoal(absCoord):
    phi = Vector2D.angleBetween(OWN_GOAL_BEHIND_CENTER,
                                Vector2D.makeVector2DCopy(absCoord))
    return MathUtil.normalisedTheta(phi)
Exemplo n.º 14
0
def angleToPenalty(absCoord):
    phi = Vector2D.angleBetween(ENEMY_PENALTY_CENTER,
                                Vector2D.makeVector2DCopy(absCoord))
    return MathUtil.normalisedTheta(phi)
Exemplo n.º 15
0
def angleToPoint(point, absCoord):
    phi = Vector2D.angleBetween(point, Vector2D.makeVector2DCopy(absCoord))
    return MathUtil.normalisedTheta(phi)
Exemplo n.º 16
0
def angleBetweenBallAndGoalCenter():
    ballPos = blackboard.localisation.ballPos
    ballVec = Vector2D.Vector2D(ballPos.x, ballPos.y)
    goalCenter = OWN_GOAL_CENTER
    phi = Vector2D.angleBetween(ballVec, goalCenter)
    return MathUtil.normalisedTheta(phi)
Exemplo n.º 17
0
import math
import Global
import Constants

blackboard = None


class Kick(object):
    NONE = -1
    MIDDLE = 0
    LEFT = 1
    RIGHT = 2


# Enemy goal vectors.
ENEMY_GOAL_CENTER = Vector2D.Vector2D(Constants.FIELD_LENGTH / 2.0, 0)
ENEMY_GOAL_BEHIND_CENTER = Vector2D.Vector2D(
    Constants.FIELD_LENGTH / 2.0 + 100,
    0)  # +100 offset so angles aren't too sharp near goals
ENEMY_GOAL_INNER_LEFT = Vector2D.Vector2D(
    Constants.FIELD_LENGTH / 2.0,
    Constants.GOAL_POST_ABS_Y - (Constants.GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_INNER_RIGHT = Vector2D.Vector2D(
    Constants.FIELD_LENGTH / 2.0,
    -Constants.GOAL_POST_ABS_Y + (Constants.GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_OUTER_LEFT = Vector2D.Vector2D(
    Constants.FIELD_LENGTH / 2.0,
    Constants.GOAL_POST_ABS_Y + (Constants.GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_OUTER_RIGHT = Vector2D.Vector2D(
    Constants.FIELD_LENGTH / 2.0,
    -Constants.GOAL_POST_ABS_Y - (Constants.GOAL_POST_DIAMETER / 2))
def angleToPenalty(absCoord):
   phi = Vector2D.angleBetween(ENEMY_PENALTY_CENTER, Vector2D.makeVector2DCopy(absCoord))
   return MathUtil.normalisedTheta(phi)
Exemplo n.º 19
0
from util import TeamStatus
import math
import Global
from Constants import (
    FIELD_LENGTH,
    FIELD_WIDTH,
    GOAL_POST_ABS_Y,
    GOAL_POST_DIAMETER,
    MARKER_CENTER_X,
)

blackboard = None

# Enemy goal vectors.
OFFSET_REDUCE_SHARPNESS = 150  # so angles aren't too sharp near goals
ENEMY_GOAL_CENTER = Vector2D.Vector2D(FIELD_LENGTH / 2.0, 0)
ENEMY_GOAL_BEHIND_CENTER = Vector2D.Vector2D(
    FIELD_LENGTH / 2.0 + OFFSET_REDUCE_SHARPNESS, 0)
ENEMY_GOAL_INNER_LEFT = Vector2D.Vector2D(
    FIELD_LENGTH / 2.0, GOAL_POST_ABS_Y - (GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_INNER_RIGHT = Vector2D.Vector2D(
    FIELD_LENGTH / 2.0, -GOAL_POST_ABS_Y + (GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_OUTER_LEFT = Vector2D.Vector2D(
    FIELD_LENGTH / 2.0, GOAL_POST_ABS_Y + (GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_OUTER_RIGHT = Vector2D.Vector2D(
    FIELD_LENGTH / 2.0, -GOAL_POST_ABS_Y - (GOAL_POST_DIAMETER / 2))
ENEMY_GOAL_CORNER_LEFT = Vector2D.Vector2D(FIELD_LENGTH / 2.0, FIELD_WIDTH / 2)
ENEMY_GOAL_CORNER_RIGHT = Vector2D.Vector2D(FIELD_LENGTH / 2.0,
                                            -FIELD_WIDTH / 2)
ENEMY_PENALTY_CENTER = Vector2D.Vector2D(MARKER_CENTER_X, 0)
def angleToOwnGoal(absCoord):
   phi = Vector2D.angleBetween(OWN_GOAL_BEHIND_CENTER, Vector2D.makeVector2DCopy(absCoord))
   return MathUtil.normalisedTheta(phi)
def angleToGoalRight(absCoord):
   phi = Vector2D.angleBetween(ENEMY_GOAL_INNER_RIGHT, Vector2D.makeVector2DCopy(absCoord))
   return MathUtil.normalisedTheta(phi)
Exemplo n.º 22
0
def angleIntoField():
    toCentre = globalPointToRobotRelativePoint(Vector2D.Vector2D(0, 0))
    return toCentre.heading()
Exemplo n.º 23
0
def angleToGoal(absCoord):
    phi = Vector2D.angleBetween(ENEMY_GOAL_BEHIND_CENTER,
                                Vector2D.makeVector2DCopy(absCoord))
    return normalisedTheta(phi)
Exemplo n.º 24
0
    def calculateDestinationViaObstacles(self, vectorToTarget, extraObstacles):
        isSupporter = len(extraObstacles) > 0
        "attractive field of target"
        Uatt = PotentialField.getAttractiveField(vectorToTarget)

        # let x axis be path
        targetHeading = vectorToTarget.heading()
        rotatedVectorToTarget = vectorToTarget.rotated(-targetHeading)
        # dont avoid obstacles within 100mm to target
        rotatedVectorToTarget.x -= copysign(100, rotatedVectorToTarget.x)

        "repulsive field of each obstacle"
        Urep = Vector2D.Vector2D(0, 0)
        obstacles = Global.robotObstaclesList()
        for i in range(0, len(obstacles)):
            #          LedOverride.override(LedOverride.leftEye, Constants.LEDColour.magenta)
            logObstacle(obstacles[i].rr.distance, obstacles[i].rr.heading)
            obsPos = Vector2D.makeVector2DFromDistHeading(
                obstacles[i].rr.distance, obstacles[i].rr.heading)
            if isSupporter or isNearPathToTarget(
                    targetHeading, rotatedVectorToTarget, obsPos):
                Urep = Urep.plus(PotentialField.getRepulsiveField(obsPos))

        # add sonar and goal posts
        obstacles = self.getSonarObstacles()
        obstacles.extend(self.getGoalPostsFromVision())
        obstacles.extend(extraObstacles)
        for i in range(0, len(obstacles)):
            logObstacle(obstacles[i].length(), obstacles[i].heading())
            if isSupporter or isNearPathToTarget(
                    targetHeading, rotatedVectorToTarget, obstacles[i]):
                Urep = Urep.plus(PotentialField.getRepulsiveField(
                    obstacles[i]))

        # add closest points to field borders
        myPos = Global.myPos()
        myHeading = Global.myHeading()
        BORDER_PADDING = 800
        obstacles = [
            Vector2D.Vector2D(
                Constants.FIELD_LENGTH / 2 + BORDER_PADDING - myPos.x, 0),
            Vector2D.Vector2D(
                -(Constants.FIELD_LENGTH / 2 + BORDER_PADDING) - myPos.x, 0),
            Vector2D.Vector2D(
                0, Constants.FIELD_WIDTH / 2 + BORDER_PADDING - myPos.y),
            Vector2D.Vector2D(
                0, -(Constants.FIELD_WIDTH / 2 + BORDER_PADDING) - myPos.y)
        ]
        for i in range(0, len(obstacles)):
            obstacle = obstacles[i].rotate(-myHeading)
            logObstacle(obstacle.length(), obstacle.heading())
            if isSupporter or isNearPathToTarget(
                    targetHeading, rotatedVectorToTarget, obstacle):
                Urep = Urep.plus(PotentialField.getRepulsiveField(obstacle))

        #sum the fields, we only need the heading change
        U = Uatt.plus(Urep)
        # avoid losing too much forward momentum
        headingDiff = clamp(U.heading() - vectorToTarget.heading(),
                            radians(-70), radians(70))
        vectorToTarget.rotate(headingDiff)
        logTarget(vectorToTarget, headingDiff)
        return vectorToTarget
def angleBetweenBallAndGoalCenter():
   ballPos = blackboard.localisation.ballPos
   ballVec = Vector2D.Vector2D(ballPos.x, ballPos.y)
   goalCenter = OWN_GOAL_CENTER
   phi = Vector2D.angleBetween(ballVec, goalCenter)
   return MathUtil.normalisedTheta(phi)
def angleToPoint(point, absCoord):
   phi = Vector2D.angleBetween(point, Vector2D.makeVector2DCopy(absCoord))
   return MathUtil.normalisedTheta(phi)
Exemplo n.º 27
0
def getTeammatePose(index):
    pose = blackboard.receiver.data[index].robotPos
    return (Vector2D.Vector2D(pose.x, pose.y), pose.theta)