Exemplo n.º 1
0
def run():
    # prepare data
    util_file.prepare_file(configuration.data_file)

    # read prepared data
    dataset = pd.read_csv(configuration.data_file_cleaned)

    # creating random forest
    create_random_forests(dataset)
def run():
    # prepare data
    util_file.prepare_file(configuration.data_file)

    # read prepared data
    dataset = pd.read_csv(configuration.data_file_cleaned)

    # check correlation
    correlations = util.check_correlation(dataset, configuration.dimensions)
    print("correlations:", correlations)
def run():
    # prepare data
    util_file.prepare_file(configuration.data_file)

    # read prepared data
    dataset = pd.read_csv(configuration.data_file_cleaned)

    # check correlation
    #correlations = util.check_correlation(dataset, configuration.dimensions_pol)
    #print("correlations:", correlations)

    # generate linear models and calculate their metrics
    generate_models(configuration.dimensions_logregpca, dataset)
Exemplo n.º 4
0
def run():
    print("running contentbased algorithm")

    # prepare data
    util_file.prepare_file(configuration.data_file)
    
    # read prepared data
    dataset = pd.read_csv(configuration.data_file_cleaned)

    for threshold in range(1,100):
        calculateAllProfiles(dataset, threshold)

    print(results)
    results.to_csv("content_based_results.csv")
Exemplo n.º 5
0
def runParTuning():
    # prepare data
    util_file.prepare_file(configuration.data_file)

    # read prepared data
    dataset = pd.read_csv(configuration.data_file_cleaned)

    for dep in configuration.dependent:
        print("running parameter tuning maxdepth for :", dep)
        partun_max_depth(dataset, dep)

    # parameter tuning
    for dep in configuration.dependent:
        print("running parameter tuning n_estimators for :", dep)
        partun_n_estimators(dataset, dep)