Exemplo n.º 1
0
    def process_and_save_files(self):
        """
        process files in self.files, according to its width and height
        :return: None
        """
        print('Processing and saving files ...')
        start_time = time.time()
        self.structure.remove_existing_files()
        self.structure.make_folders()
        self.images = []

        total = len(self.files)
        files_chunks = []
        start = 0
        while start < total - 1:
            end = start + settings.MAX_CACHE_PROCESSED_IMAGES
            files_chunks.append(self.files[start:end])
            start = end

        total_chunks = len(files_chunks)
        for chunk_index, chunk in enumerate(files_chunks):
            processed_images = []
            total_files = len(chunk)
            for file_index, file in enumerate(chunk):
                database_item = DatabaseImageItem(file)
                processed_images.append(database_item)
                self.images.append(
                    ImageItem(database_item, self.width, self.height))
                utilities.print_progress(file_index + 1,
                                         total_files,
                                         curr_chunk=chunk_index + 1,
                                         total_chunks=total_chunks)
            utilities.save(processed_images,
                           self.structure.get_list_name(chunk_index))
        utilities.print_done(time.time() - start_time)
Exemplo n.º 2
0
    def _make_sticker(self,
                      label,
                      title="",
                      pixel_threshold=0.01,
                      save_threshold=0.9):

        basic_im = np.copy(self.start)
        for i in range(self.num_rows):
            for j in range(self.num_rows):
                for k in range(3):
                    if self.probarray[i, j, k, label] > pixel_threshold:
                        basic_im[self.fringe + i * self.pixelsize:self.fringe +
                                 (i + 1) * self.pixelsize,
                                 self.fringe + j * self.pixelsize:self.fringe +
                                 (j + 1) * self.pixelsize, k] = 255
        if np.max(basic_im - self.start) > 0:
            prob = np.array(save_and_query(basic_im, "temp.png"))
            self.queries += 1
            sleep(1)
            print("Confidence for Sticker on label " + str(label) + ": " +
                  str(prob[label]))
        else:
            prob = np.zeros(LABEL_AMOUNT)
        if prob[label] > save_threshold:
            basic_im = unstick(basic_im, self.start)
            save_url = STICKER_DIRECTORY + "/" + str(label) + "/" + title +\
                       str(pixel_threshold) + str(prob[label]) + ".png"
            save(basic_im, save_url)
            print("Sticker saved under " + save_url)
        try:
            remove("temp.png")
        except FileNotFoundError:
            pass

        return basic_im
Exemplo n.º 3
0
def create_class():
    global school_data
    class_room = input("Введите класс или Enter для возврата в предыдущее меню\n:")
    if class_room:
        school_data['classes'].append(class_room)
        save(school_data, 'school.json')
        input('Класс успешно создан, нажмите Enter для возврата в предыдущее меню\n:')
    else:
        return
Exemplo n.º 4
0
    def create_database(self):

        print('Creating database | {} | '.format(self.database_path), end='')

        # remove existing database if any
        if os.path.isdir(self.database_path):
            shutil.rmtree(self.database_path)

        os.mkdir(self.database_path)

        pool = Pool()
        file_size = len(self.files)
        database_item_generator = functools.partial(
            DatabaseItem,
            width=settings.DATABASE_IMAGE_WIDTH,
            height=settings.DATABASE_IMAGE_HEIGHT)
        print('total {} '.format(file_size))

        data_paths = []
        cache_images = []
        cache_images_size = 0

        print(' >>> waiting for arrival of chunks ...', end='')

        for index, items in enumerate(
                pool.imap_unordered(database_item_generator, self.files)):
            cache_images.append(items)  # database item
            cache_images_size += 1

            if (cache_images_size >=
                    settings.DATABASE_CHUNK_SIZE) or index + 1 == file_size:
                data_path = self.get_save_image_path()
                data_paths.append(data_path)
                utilities.save(cache_images, data_path)
                cache_images = []
                cache_images_size = 0

            utilities.print_progress(index + 1, file_size)

        database_meta = {
            'number of files': file_size,
            'chunk size': settings.DATABASE_CHUNK_SIZE,
            'files': self.files,
            'paths': data_paths,
            'image width': settings.DATABASE_IMAGE_WIDTH,
            'image height': settings.DATABASE_IMAGE_HEIGHT,
            'chunk count': self.save_image_count,
            'file type': settings.DATABASE_FILE_TYPE,
            'database path': self.database_path,
            'meta file path': self.database_meta_file
        }

        # save meta
        utilities.save(database_meta, self.database_meta_file)

        utilities.print_done()
Exemplo n.º 5
0
def create_class():
    global school_data
    class_room = input(
        "Введите класс или Enter для возврата в предыдущее меню\n:")
    if class_room:
        school_data['classes'].append(class_room)
        save(school_data, 'school.json')
        input(
            'Класс успешно создан, нажмите Enter для возврата в предыдущее меню\n:'
        )
    else:
        return
Exemplo n.º 6
0
def start_game_play(player, gameDisplay):
    print(111111111111111111)
    w, h = pygame.display.get_surface().get_size()
    music_player = music.Music_Player()
    music_player.play_ambtrack2()
    gameDisplay.fill(config.black)
    buttons = [
        Button("BACK", config.white,
               pygame.font.Font("assets/fonts/CHILLER.ttf", 70), (90, 60),
               gameDisplay)
    ]
    gui = pygame.Surface((w, h))
    while True:
        for event in pygame.event.get():
            if event.type == pygame.KEYDOWN:
                if event.key == pygame.K_ESCAPE:
                    global paused
                    paused = True
                    print(420420420)
                    utilities.pause()
                #if s button is pressed save the character's stats
                if event.key == pygame.K_s:
                    print('saved the game')
                    utilities.save(player)
                #if l button is pressed load the character's stats
                if event.key == pygame.K_l:
                    utilities.load()
                    player.pos = utilities.loaddata['pos']
                    player.health = utilities.loaddata['health']
                    player.actions = utilities.loaddata['actions']
                    player.items = utilities.loaddata['items']
                    player.hp = utilities.loaddata['hp']
            elif (event.type == pygame.QUIT):
                pygame.quit()
                quit()
            elif (event.type == pygame.MOUSEBUTTONDOWN and event.button == 1
                  and buttons[0].rect.collidepoint(pygame.mouse.get_pos())):
                pass
                # main_menu()

        # for button in buttons:
        #     Button.check_Hover(button, gameDisplay)
        pygame.display.update()
        gui.fill(config.white)

        gameDisplay.blit(gui, (0, 0))
        game_start(player, gameDisplay)
        clock.tick(15)
Exemplo n.º 7
0
def main(args):
    print('Reading config...')
    config = utilities.read_json_config(args.config, utilities.Task.train)
    train_type = str(args.type)
    print('Preparing output directory...')
    output_dir = '{}/{}/train/{}'.format(config['dir']['output'], config['name'], train_type)
    utilities.create_dir(output_dir)
    print('Preparing dataset...')
    dataset = prepare_dataset(config, train_type, get_data_col(args.type))
    print('Preparing trainers...')
    trainers = prepare_trainer(config)
    print('There are {} models that needs to be trained'.format(len(trainers)))
    print()
    print('Training predictors...')
    predictors = train_predictor(config, trainers, dataset)
    print(predictors)
    print()
    print('Test predictors...')
    tests = test_predictor(predictors, dataset)

    print('Preparing other output dirs')
    cdf_dir = '{}/cdf'.format(output_dir)
    gnuplot_dir = '{}/gnuplot'.format(output_dir)
    plot_dir = '{}/plot'.format(output_dir)
    model_dir = '{}/model'.format(output_dir)

    utilities.create_dir(cdf_dir)
    utilities.create_dir(gnuplot_dir)
    utilities.create_dir(plot_dir)
    utilities.create_dir(model_dir)

    print('Generate diff and plots...')

    pbar = tqdm(predictors)
    for predictor in pbar:
        pbar.set_description('Generate diffs for {}'.format(predictor))
        diff = generate_diff(config, predictors, predictor, dataset)
        pbar.set_description('Saving diffs for {}'.format(predictor))
        sorted_indexes = save_diff(config, cdf_dir, predictor, diff)
        pbar.set_description('Creating plot for {}'.format(predictor))
        save_plot(config, cdf_dir, gnuplot_dir, plot_dir, predictor, diff, sorted_indexes)
        pbar.set_description('Saving model for {}'.format(predictor))
        utilities.save('{}/{}.joblib'.format(model_dir, predictor), predictors[predictor])
Exemplo n.º 8
0
def infer_save_frames(input_frames_path, out_frames_path, every_nth=1):
    frame_files = sorted(glob.glob(input_frames_path + '/*'))

    num_frames = len(frame_files)
    detect_time = 0
    recognize_time = 0
    print('Detecting and recognizing text from {} frames: {}'.format(
        num_frames, str(datetime.now())))
    wordBB = None
    score = None
    text = None

    for index, filename in tqdm(enumerate(frame_files), total=num_frames):
        out_name = out_frames_path + '/out_{0:04d}.png'.format(index)
        if (index % every_nth == 0):
            wordBB, score = detection.detect(filename)

            if score.shape[0] == 0:
                wordBB = None
                score = None
            else:
                text = recognition.recognize(filename, wordBB)

        utilities.save(filename, wordBB, text, out_name)
Exemplo n.º 9
0
    def update_existing_database(self):
        print('Updating existing database')
        meta_dict = utilities.load(self.database_meta_file)

        files_to_add = [
            file for file in self.files if file not in meta_dict['files']
        ]
        total_files = len(files_to_add)
        if total_files == 0:
            print('There is no new images found ... [ done ]')
            return
        database_width = meta_dict['image width']
        database_height = meta_dict['image height']
        max_chunk_size = meta_dict['chunk size']
        chunk_count = meta_dict['chunk count']
        file_type = meta_dict['file type']
        database_path = meta_dict['database path']
        cache_images = []
        num_of_cache_images = 0
        data_paths = []

        for index, file in enumerate(files_to_add):
            cache_images.append(
                DatabaseItem(file, database_width, database_height))
            num_of_cache_images += 1
            if num_of_cache_images >= max_chunk_size:
                chunk_count += 1
                data_path = database_path + os.path.sep + chunk_count + file_type
                utilities.save(cache_images, data_path)
                data_paths.append(data_path)
                cache_images = []
                num_of_cache_images = 0
            utilities.print_progress(index + 1, total_files)
        utilities.print_done()

        # save remaining cached images
        if cache_images:  # if not empty
            chunk_count += 1
            data_path = database_path + os.path.sep + chunk_count + file_type
            utilities.save(cache_images, data_path)
            data_paths.append(data_path)

        meta_dict['number of files'] += len(files_to_add)
        meta_dict['files'] += files_to_add
        meta_dict['paths'] += data_paths
        meta_dict['chunk count'] += chunk_count

        utilities.save(meta_dict, meta_dict['meta file path'])
Exemplo n.º 10
0
def save_all():
    save(students_data, 'Students.json')
    save(teachers_data, 'Teachers.json')
    save(school_data, 'school.json')
Exemplo n.º 11
0
        min_weight_fraction_leaf=min_weight_fraction_leaf,
        max_depth=max_depth,
        max_features=max_features,
        verbose=2)


if __name__ == '__main__':
    TRAIN_DATA = 'atlas-higgs-challenge-2014-v2_train.csv'

    args = parse_args()
    save_arg = args.pop('save')

    log.info('Reading data from {}'.format(TRAIN_DATA))
    X, y, w = utilities.get_data_labels_weights(TRAIN_DATA)

    log.info('Renormalising weights')
    w_norm = utilities.normalise_weights(w, y)

    gbc = make_GBC(**args)
    log.info('Created classifier\n{}'.format(gbc))

    log.info('Training classifier...')
    start_time = time.time()
    mean_score = gbc.fit(X, y, sample_weight=w_norm)
    end_time = time.time()
    log.info('Completed in {}'.format(
        utilities.delta_time(start_time, end_time)))

    log.info('Saving classifier as {}'.format(save_arg))
    utilities.save(gbc, save_arg)
Exemplo n.º 12
0
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import mpi_resistor_model as resistor_model
from functools import partial
import numpy as np
import networkx as nx

steps = 40000
selfishness = lambda: np.random.rand()
gain = lambda: 0.0005 

con = resistor_model.Controller(100, Ri=2, R=200, U=10, comm_error=0.01,
	overcurrent=4.5,min_gain=gain,turns=steps,generate_graph=True,
,selfishness=selfishness)
con.is_constrained=False
con.run()
con.collectAgents()


if con.rank == 0:
	print "computation finished."	
	import utilities

	data = {'steps':steps,'Ri':con.Ri,'R':con.R/con._N,'U':con.U,
		'comm_error':con.comm_error,'overcurrent':con.overcurrent,
		'min_gain':0.0005,'constrained':con.is_constrained,
		'N_agents':con.N_agents,'horizon':con.trend_horizon}

	utilities.save(con,data,'test.npz')
Exemplo n.º 13
0
 def save(image, structure):
     filename = structure.get_image_filename(image.filename)
     utilities.save(image, filename)
Exemplo n.º 14
0
def save_all():
    save(students_data, 'Students.json')
    save(teachers_data, 'Teachers.json')
    save(school_data, 'school.json')
Exemplo n.º 15
0
# MATHEW LEWIS, JUNE 2020

import numpy as np
import tensorflow as tf
tf.keras.backend.set_floatx('float64')
from utilities import save, compAndTrain

# get the data
x_train = np.load('data/x_train.npy')
y_train = np.load('data/y_train.npy')

# build the model

# this initializes the model
model = tf.keras.models.Sequential()
# this adds a layer with 128 nodes, dense means they are all connected
model.add(tf.keras.layers.Dense(128, activation='relu'))
# dropout means when training we drop out some of the edges in the graph
# this makes the model more robust
model.add(tf.keras.layers.Dropout(0.2))
# another 10 nodes (10 because the demo classifies then numbers 1 through 10)
model.add(tf.keras.layers.Dense(10))

# compile and train the model
compAndTrain(model, x_train, y_train, 4)
# save the model
save(model, 'models/model')
def character_selection(gameDisplay):
    print("selecting characters")
    w, h = pygame.display.get_surface().get_size()
    music_player = music.Music_Player()
    music_player.play_ambtrack9()
    gameDisplay.fill(config.black)
    buttons = [Button("BACK", config.white, pygame.font.Font("assets/fonts/CHILLER.ttf", 70), (90, 60), gameDisplay)]
    character_list = create_all_characters()
    selection_gui = pygame.Surface((w, h))
    image_list, character_types = get_image_list()
    image_rect_list = []
    num_of_images = len(image_list) + 1
    start_x = 0
    start_y = 0
    x_offset = int(w / num_of_images) 
    
    char_detail_surf, char_detail_rect = pygame.Surface((0,0)), pygame.Surface((0,0)) # init to random surface to avoid crash on line 2016
    for elem in image_list:
        transformed_image = transform_image(elem, w, h, num_of_images)
        image_rect_list.append(set_image_location(transformed_image, start_x, start_y))
        start_x += x_offset
    char_detail_offset = start_x
    while True:
        for event in pygame.event.get():
            if (event.type == pygame.QUIT):
                pygame.quit()
                quit()
            elif (selection_gui.get_rect().collidepoint(pygame.mouse.get_pos())):
                index = 0
                for char_image, char_rect in image_rect_list:
                    if (char_rect.collidepoint(pygame.mouse.get_pos())):
                        character = Character(character_types[index])
                        size = (x_offset, h)
                        char_detail_surf = get_player_stats(character, size)
                        break
                    index += 1
            #back button when clicked returns to main menu
            if (event.type == pygame.MOUSEBUTTONDOWN and event.button == 1 and buttons[0].rect.collidepoint(
                    pygame.mouse.get_pos())):
                return
            elif (event.type == pygame.MOUSEBUTTONDOWN and event.button == 1):
                index = 0
                for char_image, char_rect in image_rect_list:
                    if (char_rect.collidepoint(event.pos)):
                        print("character selected")
                        character = Character(character_types[index])
                        player = Player(character)
                        save(player)

                        game_start(player, gameDisplay)
                    index += 1
            elif (selection_gui.get_rect().collidepoint(pygame.mouse.get_pos())):
                index = 0
                for char_image, char_rect in image_rect_list:
                    if (char_rect.collidepoint(pygame.mouse.get_pos())):
                        character = Character(character_types[index])
                        size = (x_offset, h)
                        char_detail_surf = get_player_stats(character, size)
                        break
                    index += 1

        for button in buttons:
            Button.check_Hover(button, gameDisplay)
        pygame.display.update()
        selection_gui.fill(config.white)
        selection_gui.blit(char_detail_surf, (char_detail_offset, 10))
        for image, image_rect in image_rect_list:
            selection_gui.blit(image, image_rect)
        gameDisplay.blit(selection_gui, (0, 0))
        TextSurf, TextRect = render_text("Choose a Character", config.SPOOKY_BIG_FONT, config.red)
        TextRect.center = ((round(config.display_width / 2)), (round(config.display_height * .9)))
        gameDisplay.blit(TextSurf, TextRect)
        clock.tick(15)    
Exemplo n.º 17
0
                 layerStack,
                 memSize=config['agent']['replayMemorySize'],
                 stackedStateLength=config['agent']['stackedStateLength'],
                 stateScaleFactor=config['agent']['stateScaleFactor'],
                 epsilonPolicy=epsilonPolicy,
                 optimizer=optimizer,
                 loss=config['model']['lossFunction'],
                 batchSize=config['model']['batchSize'],
                 modelName=config['model']['name'])
# If required load the old model for futher learning
if config['paths']['initialModelName'] != False:
    modelToLoad = os.path.join(config['paths']['savesDir'],
                               env.unwrapped.spec.id, 'models',
                               config['paths']['initialModelName'])
    agent.loadModel(modelToLoad)

# Load replay memory if needed
if config['paths']['initialReplayMemoryName'] != False:
    replaysToLoad = os.path.join(config['paths']['savesDir'],
                                 env.unwrapped.spec.id, 'replays',
                                 config['paths']['initialReplayMemoryName'])
    agent.loadMemory(replaysToLoad)

#===================================================================================#
#====================================== Training ===================================#
#===================================================================================#

if config['mode'] == 'training':
    session(env, config, agent, lambda name: save(name, savesDir, agent))
elif config['mode'] == 'evaluation':
    evaluation(env, config, agent)
Exemplo n.º 18
0
def train(args):
    start_epoch = 0
    corpus_file = args.datadir+'/train.'

    util.trace('start training...')

    chainer.global_config.train = True
    chainer.global_config.use_cudnn = 'always'
    chainer.global_config.type_check = True
    util.trace('chainer config: {}'.format(chainer.global_config.__dict__))

    util.trace('load vocab...')
    vocab_file = args.datadir+'/vocabulary.'
    source_vocab = util.Vocabulary.load(vocab_file+args.sourcelang)
    target_vocab = util.Vocabulary.load(vocab_file+args.targetlang)
    """
    util.trace('make vocab...')
    source_vocab = util.Vocabulary.make(corpus_file+args.sourcelang, 3000)
    target_vocab = util.Vocabulary.make(corpus_file+args.targetlang, 3000)
    """

    if args.gensim_mode == 'make':
        util.trace('making word2vec...')
        src_word2vec = util.make_word2vec(corpus_file+args.sourcelang, args.edim)
        tgt_word2vec = util.make_word2vec(corpus_file+args.targetlang, args.edim)
        util.save(src_word2vec, args.datadir+'/src_word2vec.'+args.sourcelang)
        util.save(tgt_word2vec, args.datadir+'/tgt_word2vec.'+args.targetlang)
    elif args.gensim_mode == 'load':
        util.trace('loading word2vec...')
        src_word2vec = util.load_word2vec(args.datadir+'/src_word2vec.'+args.sourcelang)
        tgt_word2vec = util.load_word2vec(args.datadir+'/tgt_word2vec.'+args.targetlang)
    elif args.gensim_mode == 'not':
        util.trace('do not use word2vec')
        src_word2vec = None
        tgt_word2vec = None
    
    util.trace('making model...')
    #initialize model
    NMTmodel = nmt_model.BahdanauNMT(source_vocab, target_vocab, args, src_word2vec, tgt_word2vec)

    if args.gpunum >= 0:
        import cupy as xp
        chainer.cuda.check_cuda_available() 
        chainer.cuda.get_device(args.gpunum).use()
        NMTmodel.to_gpu()
        util.trace('use GPU id: {}'.format(args.gpunum))
    else:
        import numpy as xp
        args.gpunum = -1
        util.trace('without GPU')
    
    util.trace('random seed: {}'.format(args.seed_num))
    np.random.seed(args.seed_num)
    xp.random.seed(args.seed_num)
    random.seed(args.seed_num)

    optim = args.optim
    #this is change
    optim = chainer.optimizers.AdaGrad(lr=args.lr)
    optim.setup(NMTmodel)
    optim.add_hook(chainer.optimizer.GradientClipping(args.grad_clip))

    for epoch in range(start_epoch, args.epoch):
        util.trace('Epoch {}/{}'.format(epoch+1, args.epoch))
        accum_loss = 0.0
        num_sent = 0
        for batch_src, batch_tgt in util.miniBatch(corpus_file+args.sourcelang, corpus_file+args.targetlang,\
                                    source_vocab, target_vocab, args.batch, args.pooling):
            NMTmodel.zerograds()
            loss, batch_hyp = NMTmodel(batch_src, batch_tgt)
            accum_loss += loss.data
            loss.backward()
            optim.update()

            for src, tgt, hyp in zip(util.convert_b2w(batch_src, source_vocab), util.convert_b2w(batch_tgt, target_vocab), \
                util.convert_b2w(batch_hyp, target_vocab)):
                util.trace('Epoch {}/{}, {} sent'.format(epoch+1, args.epoch, num_sent+1))
                util.trace('src: {}'.format(src))
                util.trace('tgt: {}'.format(tgt))
                util.trace('hyp: {}'.format(hyp))
                num_sent += 1
        util.trace('accum_loss: {}'.format(accum_loss))
        util.trace('Save model ...')
        model_name = '{}.{:03d}'.format(args.name, epoch+1)
        chainer.serializers.save_npz(args.savedir+'/{}.weights'.format(model_name), NMTmodel)
        chainer.serializers.save_npz(args.savedir+'/{}.optimizer'.format(model_name), optim)