degrees = array(sorted(degree(netx), key=lambda d: d[0]))[:, 1]
max_d_node = argmax(degrees)                    # Get index of max degree
optimal = optimal_distribution(deep_load=True)

if uniform:
    red = array([balls_per_node] * N)
else:
    red = zeros(N)
    red[max_d_node] = budget

exposures = []

# Run basic metrics
for metric_id, _ in enumerate(metric_names):
    simple_centrality(net, metric_id, red=red)
    exposures.append(run_polya(net))

# Run optimal strategy
net.set_initial_distribution(black=optimal, red=red)
exposures.append(run_polya(net))

# Define constants
file_name = 'uniform_red' if uniform else 'single_red'
img_name = '../../results/centrality_metrics/' + file_name + '.png'
data_name = '../../data/centrality_metrics/' + file_name + '.csv'
labels = metric_names + ['Optimal']

# Save and plot data
save_trials(exposures, data_name, titles=labels)
plot_infection(exposures, leg=labels, multiple=True, file_name=img_name)
Exemplo n.º 2
0
N = number_of_nodes(netx)
net = network(N, graph=netx)

budget = N * balls_per_node

simple_centrality(net, 2, node_restriction=11)
degrees = sorted(degree(netx), key=lambda d: d[1], reverse=True)

infections = []
for i in red_node_counts:
    R = [0] * N
    total = 0
    for j in range(i):
        total += degrees[j][1]
    for j in range(i):
        R[degrees[j][0]] += round(degrees[j][1] / total * budget)

    print(sum(R))
    net.set_initial_distribution(red=R)
    infection = run_polya(net, steps=250, trials=3)
    infections.append(infection[len(infection) - 1])

data = array([red_node_counts, infections])
save_trials(infections, data_path, titles=red_node_counts, single_line=True)
plot_scatter_data(data,
                  x_label='Number of sites with red balls',
                  y_label='$I_{250}$',
                  file_name=fig_path,
                  size=fig_size,
                  connect=True)
Exemplo n.º 3
0
_, routes = load_airport_and_route(deep_load=True)
netx = from_edgelist(routes)
N = number_of_nodes(netx)
net = network(N, graph=netx)
budget = balls_per_node * N
print('Data imported and network generated')

# Get optimal distribution
optimal = optimal_distribution(uniform, deep_load=True)

# Initialize opponent distribution
if uniform:
    red = array([balls_per_node] * N)
else:
    degrees = array(sorted(degree(netx), key=lambda d: d[0]))[:, 1]
    max_d_node = argmax(degrees)
    red = zeros(N)
    red[max_d_node] = budget


# Run optimal strategy
net.set_initial_distribution(black=optimal, red=red)
exposures = run_polya(net, steps=num_steps)

# Define constants
file_name = ('uniform_red' if uniform else 'single_red') + '_trial'
data_name = '../../data/optimal_distribution/' + file_name + '.csv'

# Save and plot data
save_trials(exposures, data_name, single_line=True)
Exemplo n.º 4
0
    net = network(N, graph=netx)
    bud = N * balls_per_node

    ratios = linspace(.1, .9, 15)
    budgets = [(bud / ratio - bud) for ratio in ratios]
    print(ratios)
    trial_infection = []
    for budget in budgets:
        tmp = round(budget / N)
        B = [tmp] * N
        print(budget, tmp)
        net.set_initial_distribution(black=B)

        infection = run_polya(net, steps=num_steps, trials=5)
        trial_infection.append(infection[len(infection) - 1])

    save_trials(trial_infection, data_path, titles=ratios, single_line=True)
else:
    [trial_infection], ratios = load_csv_col(data_path,
                                             with_headers=True,
                                             parse=float)

ratios = [1 / (1 + float(ratio)) for ratio in ratios]
data = array([ratios, trial_infection]).astype(float)
plot_scatter_data(data,
                  file_name=fig_path,
                  x_label='$\\frac{R}{R+B}$',
                  y_label='$I_{250}$',
                  size=fig_size,
                  connect=True)
Exemplo n.º 5
0
    _, edges = load_airport_and_route(deep_load=True)
    netx = from_edgelist(edges)
    N = number_of_nodes(netx)
    budget = N * balls_per_node
    net = network(N, graph=netx)
    print('Data import and network generated')

    # Find and sort cliques
    cliques = sorted(find_cliques(netx), key=lambda c: len(c), reverse=True)

    trial_infections = []
    num_cliques = linspace(1, 120, 40).astype(int)
    for num in num_cliques:
        popularity_contest(net, num, budget)
        trial = run_polya(net, trials=2)
        trial_infections.append(trial[len(trial) - 1])
else:
    trial_infections, num_cliques = load_csv_col(data_path,
                                                 with_headers=True,
                                                 parse=float,
                                                 trans=True)

data = array([num_cliques, trial_infections])
save_trials(trial_infections, data_path, titles=num_cliques, single_line=True)
plot_scatter_data(data,
                  x_label='Number of Cliques',
                  y_label='Time n infection',
                  size=fig_size,
                  connect=True,
                  file_name=fig_path)
Exemplo n.º 6
0
data_path = '../../data/algorithm_performance/bonmin.csv'

net_sizes = logspace(1, 3, 10)
optimize_times = []
trials = 10

for raw_size in net_sizes:
    size = int(raw_size)
    netx = barabasi_albert_graph(size, 5)
    net = network(size, graph=netx)
    neighbourhoods = [[neigh.id for neigh in node] for node in net.nodes]
    init_dist = [balls_per_node] * size
    budget = balls_per_node * size

    tmp = 0
    for i in range(trials):

        start = time()
        optimize_distribution(neighbourhoods, init_dist, init_dist, budget)
        end = time()
        tmp += end - start

    optimize_times.append(tmp / trials)
    print('Done ' + str(size))


data = array([net_sizes, optimize_times])
save_trials(optimize_times, data_path, titles=net_sizes, single_line=True)
plot_scatter_data(data, file_name=img_name, x_label='Network Size', y_label='Time to Optimize (s)')

Exemplo n.º 7
0
        budget = N * per_node
        if uniform:
            red = [per_node] * N
        else:
            degrees = dict_to_arr(degree(netx))
            red = zeros(N)
            red[argmax(degrees)] = budget

        print(sum(red), budget, time)
        simple_centrality(net, 2, red=red)

        vals = run_polya(net, steps=time_limit)
        trial_infection.append(vals)
else:
    trial_infection, delay = load_csv_col(data_name, with_headers=True, trans=True, parse=float)
    delay = array(delay).astype(float)

trial_infection = array(trial_infection)
time_n = len(trial_infection[0]) - 1
time_N_infections = trial_infection[:, time_n]

# Save and plot data
if fresh_data:
    save_trials(trial_infection, data_name, titles=delay)

# plot_infection(trial_infection, leg=delay, multiple=True, file_name=img_name, blocking=False)

data = array([delay, time_N_infections])
plot_scatter_data(data, x_label='Time step delay', y_label='$I_{' + str(time_n) + '}$', connect=True,
                  file_name=scatter_name, size=fig_size)
    x_vals = array(range(1, num_steps + 2))
    R = [balls_per_node] * N

    # Maximum Entropy
    # maximum_entropy(net, metric_id=1)
    max_ent_infections = run_polya(net,
                                   steps=num_steps,
                                   combine=False,
                                   trials=num_trials)
else:
    max_ent_infections = load_csv_col(max_ent_path, parse=float, trans=True)

max_ent_var = var(max_ent_infections, axis=0)

if fresh_data:
    save_trials(max_ent_infections, max_ent_path)

max_ent_data = zeros((2, len(max_ent_var)))
for i in range(len(max_ent_var)):
    max_ent_data[0, i] = i + 1
    max_ent_data[1, i] = max_ent_var[i]

plot_scatter_data(max_ent_data,
                  file_name=fig_path,
                  x_label='Time Step, n',
                  y_label='Variance',
                  connect=True,
                  y_format=True,
                  dot_size=10,
                  size=fig_size)
Exemplo n.º 9
0
                          2,
                          budget_ratio=ratio,
                          red=red,
                          node_restriction=11)

        vals = run_polya(net, steps=time_limit)
        trial_infection.append(vals)
    trial_infection = array(trial_infection)
else:
    trial_infection, ratios = load_csv_col(data_name,
                                           with_headers=True,
                                           trans=True,
                                           parse=float)
    ratios = array(ratios).astype(float)

# Prepare data
time_n = len(trial_infection[0]) - 1
time_N_infections = trial_infection[:, time_n]

# Save and plot data
if fresh_data:
    save_trials(trial_infection, data_name, titles=ratios)

data = array([ratios, time_N_infections])
plot_scatter_data(data,
                  x_label='Black Budget / Red Budget',
                  connect=True,
                  y_label='$I_{' + str(time_n) + '}$',
                  file_name=scatter_name,
                  size=(10, 7.5))
Exemplo n.º 10
0
        for num in num_nodes:
            total = sum(cents[:num, 1])
            B = [0] * N
            for i in range(num):
                ind = int(round(cents[i, 0]))
                B[ind] = cents[i, 1] / total * budget

            print(sum(B))
            net.set_initial_distribution(black=B, red=R)

            tmp = run_polya(net, steps=time_limit)
            centrality_infections.append(tmp[len(tmp) - 1])
        trial_exposures.append(centrality_infections)

    trial_exposures = array(trial_exposures)
    save_trials(trial_exposures, data_path, titles=num_nodes)
else:
    trial_exposures, num_nodes = load_csv_col(data_path,
                                              with_headers=True,
                                              trans=True,
                                              parse=float)
    num_nodes = array(num_nodes).astype(float)

# plot data
data = []
for trial in trial_exposures:
    data.append([num_nodes, trial])
data = array(data)

plot_scatter_data([data[0], data[1], data[3], data[2]],
                  x_label='Number of Nodes with Black Balls, $m$',
Exemplo n.º 11
0
from utilities import save_trials

ex_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
titles = ['a', 'b', 'c']

save_trials(ex_data, '../data/bla.csv', titles=titles)
Exemplo n.º 12
0
    for metric_id in metrics:
        data = calculate_clique_weights(net, metric_id=metric_id)
        trial_infections = []

        for num in num_cliques:
            weighted_cliques(net, num, budget, data=data)
            trial = run_polya(net, trials=2)
            trial_infections.append(trial[len(trial) - 1])

        infections.append(trial_infections)
else:
    infections, num_cliques = load_csv_col(data_path,
                                           with_headers=True,
                                           parse=float,
                                           trans=True)

num_cliques = list(map(int, num_cliques))
data = array([[num_cliques, infection]
              for infection in list(infections)]).astype(float)

save_trials(infections, data_path, titles=num_cliques)
plot_scatter_data(data,
                  multiple=True,
                  leg=metric_names,
                  x_label='Number of Cliques',
                  y_label='Time n infection',
                  size=fig_size,
                  connect=True,
                  file_name=fig_path)