from utilities import ConfusionMatrix

a = [0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]
p = [0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 3, 3, 3]

cm = ConfusionMatrix(a, p)

print("ACTUAL")
print(a)
print("PREDICTED")
print(p)

for i in range(4):
    print("\ncategory %s:" % i)
    print("TP: ", end="")
    print(cm.TP(label=i))
    print("FP: ", end="")
    print(cm.FP(label=i))
    print("TN: ", end="")
    print(cm.TN(label=i))
    print("FN: ", end="")
    print(cm.FN(label=i))

print("avg accuracy: ", end="")
print(cm.average_accuracy())
print("accuracy: ", end="")
print(cm.accuracy())
print("precision: ", end="")
print(cm.precision())
print("recall: ", end="")
print(cm.recall())
	return Y_test, predicted


to_save = []

if test_what == 'train_size':

	to_save.append(('train_size', 'accuracy', 'precision', 'recall'))

	for train_size in [ 1000*n for n in range(1,10) ]:
		print('train_size:',train_size)
		# train the naive bayes and obtain the actual, predicted vectors.
		actual, predicted = run_nb(train_size=train_size, learn_code=learn_code)

		# get confusion matrix to get metrics
		CM = ConfusionMatrix(actual, predicted)

		to_save.append( (train_size, CM.average_accuracy(), CM.precision(), CM.recall() ) )

elif test_what == 'cumulative_ngram':
	to_save.append(('ngram_max', 'accuracy', 'precision', 'recall'))

	for max_ngram in range(4,9):
		print('max_ngram:',max_ngram)
		# train the naive bayes and obtain the actual, predicted vectors.
		actual, predicted = run_nb(ngram_range=(1,max_ngram),  learn_code=learn_code)

		# get confusion matrix to get metrics
		CM = ConfusionMatrix(actual, predicted)

		to_save.append( (max_ngram, CM.average_accuracy(), CM.precision(), CM.recall() ) )
Exemplo n.º 3
0

to_save = []

if test_what == 'train_size':

    to_save.append(('train_size', 'accuracy', 'precision', 'recall'))

    for train_size in [1000 * n for n in range(1, 10)]:
        print('train_size:', train_size)
        # train the naive bayes and obtain the actual, predicted vectors.
        actual, predicted = run_nb(train_size=train_size,
                                   learn_code=learn_code)

        # get confusion matrix to get metrics
        CM = ConfusionMatrix(actual, predicted)

        to_save.append(
            (train_size, CM.average_accuracy(), CM.precision(), CM.recall()))

elif test_what == 'cumulative_ngram':
    to_save.append(('ngram_max', 'accuracy', 'precision', 'recall'))

    for max_ngram in range(4, 9):
        print('max_ngram:', max_ngram)
        # train the naive bayes and obtain the actual, predicted vectors.
        actual, predicted = run_nb(ngram_range=(1, max_ngram),
                                   learn_code=learn_code)

        # get confusion matrix to get metrics
        CM = ConfusionMatrix(actual, predicted)
Exemplo n.º 4
0
# In[166]:

mb.fit(X_train2, list(Y_train))

# In[167]:

X_test2 = kb.transform(cv.transform(X_test))
X_test2 = cv.transform(X_test)

# In[168]:

Y_predicted = mb.predict(X_test2)

# In[169]:

cm = ConfusionMatrix(Y_test, Y_predicted)

# In[170]:

cm.average_accuracy()

# In[171]:

cm.confusion_matrix

# In[152]:

df = pd.read_csv('./clean/ml_dataset_test_in-1111.csv', index_col=0)

# In[153]:
Exemplo n.º 5
0

# In[167]:

X_test2 = kb.transform(cv.transform(X_test))
X_test2 = cv.transform(X_test)


# In[168]:

Y_predicted = mb.predict(X_test2)


# In[169]:

cm = ConfusionMatrix(Y_test, Y_predicted)


# In[170]:

cm.average_accuracy()


# In[171]:

cm.confusion_matrix


# In[152]:

df = pd.read_csv('./clean/ml_dataset_test_in-1111.csv', index_col=0)