Exemplo n.º 1
0
def run():

    args = NGCF_Args(parse_args())

    # 获取训练集的dataloader形式
    data = DATA(args.data_path, args.dataset_name)
    train_set, train_U2I, test_U2I, edge_indices, edge_weight, n_users, n_items = data.load(
    )
    train_dl = get_loader(train_set, train_U2I, n_items, args.batch_size,
                          args.cores)

    # 获取归一化的拉普拉斯矩阵
    laplace_graph = Graph(edge_indices, edge_weight)
    laplace_graph.add_self_loop()
    laplace_graph.norm()
    norm_adj = laplace_graph.mat.cuda()

    # 定义网络
    model = NGCF(n_users, n_items, norm_adj, args)
    model = model.cuda()
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # 定义会话
    sess = Session(model)

    for epoch in range(args.num_epochs):
        loss, mf_loss, emb_loss = sess.train(train_dl, optimizer)
        print("epoch: {:d}, loss = [{:.6f} == {:.6f} + {:.6f}]".format(
            epoch, loss, mf_loss, emb_loss))
        perf_info = evaluate(model, n_users, n_items, train_U2I, test_U2I,
                             args)
        print("precision: [{:.6f}] recall: [{:.6f}] ndcg: [{:.6f}]".format(
            perf_info[0], perf_info[1], perf_info[2]))
Exemplo n.º 2
0
def run():

    args = BPRMF_Args(parse_args())

    # 获取训练集的dataloader形式
    data = DATA(args.data_path, args.dataset_name)
    train_set, train_U2I, test_U2I, n_users, n_items = data.load()
    train_dl = get_loader(train_set, train_U2I, n_items, args.batch_size,
                          args.cores)

    # 定义网络
    model = BPRMF(n_users, n_items, args)
    model = model.cuda()
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # 定义会话
    sess = Session(model)

    for epoch in range(args.num_epochs):
        loss, mf_loss, emb_loss = sess.train(train_dl, optimizer)
        print("epoch: {:d}, loss = [{:.6f} == {:.6f} + {:.6f}]".format(
            epoch, loss, mf_loss, emb_loss))
        perf_info = evaluate(model, n_users, n_items, train_U2I, test_U2I,
                             args)
        print("precision: [{:.6f}] recall: [{:.6f}] ndcg: [{:.6f}]".format(
            perf_info[0], perf_info[1], perf_info[2]))
Exemplo n.º 3
0
 def build_args(self):
     if self.model_name in ['kgat', 'cfkg', 'nfm', 'cke']:
         from utility.parser import parse_args
     elif self.model_name.startswith('EKGCN'):
         from main import parse_args
     elif self.model_name == 'ripple':
         from ripple_main import parse_args
     args = parse_args()
     if self.arg_file is not None:
         args = load_args(self.arg_file, args)
     return args
Exemplo n.º 4
0
def run():
    parser = parse_args()
    d = Movielens(parser.data_path, parser.threshold)
    train_dl, test_dl = get_Dataloader(d.train_set, d.test_set,
                                       parser.batch_size, parser.cores)

    model = FactorMachine(d.sparse_n_features, d.dense_n_features,
                          parser.n_classes, parser.n_factors,
                          parser.batch_size, parser.decay)
    model = model.cuda()
    optimizer = optim.Adam(model.parameters(), lr=parser.lr)

    sess = Session(model, d.max_user_id, d.max_item_id)

    for epoch in range(parser.num_epoch):
        loss, cross_loss, l2_loss = sess.train(train_dl, optimizer)
        print("epoch: {:d}, loss = [{:.6f} == {:.6f} + {:.6f}]".format(
            epoch, loss, cross_loss, l2_loss))
        loss, cross_loss, l2_loss, auc = sess.test(test_dl)
        print("loss = [{:.6f} == {:.6f} + {:.6f}], auc = [{:.6f}]".format(
            loss, cross_loss, l2_loss, auc))
        print('\n')
Exemplo n.º 5
0
from utility.parser import parse_args
from utility.load_data import *
import subprocess
import torch

args = parse_args()

data_generator = Data(path=args.data_path + args.dataset,
                      batch_size=args.batch_size)
doc_dict, doc_dict_rev = data_generator.doc_dict, data_generator.doc_dict_rev
qrl_dict, qrl_dict_rev = data_generator.qrl_dict, data_generator.qrl_dict_rev
qrelf = args.data_path + args.dataset + '/qrels'


def pad_sequences(items, maxlen, value=data_generator.n_words):
    result = []
    for item in items:
        if len(item) < maxlen:
            item = item + [value] * (maxlen - len(item))
        if len(item) > maxlen:
            item = item[:maxlen]
        result.append(item)
    return result


def words_lookup(docs):
    if args.model == 'GHRM':
        return [data_generator.doc_unqiue_word_list[i] for i in docs]
    else:
        return [data_generator.doc_word_list[i] for i in docs]
Exemplo n.º 6
0
'''
Created on Oct 10, 2018
Tensorflow Implementation of Neural Graph Collaborative Filtering (NGCF) model in:
Wang Xiang et al. Neural Graph Collaborative Filtering. In SIGIR 2019.

@author: Xiang Wang ([email protected])
'''
import utility.metrics as metrics
from utility.parser import parse_args
from utility.load_data import *
import multiprocessing
import heapq

cores = multiprocessing.cpu_count() // 2

args = parse_args()  # It can be called in other scripts
Ks = eval(args.Ks)  # transfer string into dict, tuple and list

data_generator = Data(path=args.data_path + args.dataset,
                      batch_size=args.batch_size)
USR_NUM, ITEM_NUM = data_generator.n_users, data_generator.n_items
N_TRAIN, N_TEST = data_generator.n_train, data_generator.n_test
BATCH_SIZE = args.batch_size


def ranklist_by_heapq(user_pos_test, test_items, rating, Ks):
    item_score = {}
    for i in test_items:
        item_score[i] = rating[i]

    K_max = max(Ks)