Exemplo n.º 1
0
    # raw words and labels
    file_words = open("../data/unique_equations.json")
    file_labels = open("../data/unique_labels.json")
    # pre calculated weight matrix
    file_weights = open("../data/weights_0.json")
    data_provider = DataProviderLight(file_words,
                                      file_labels,
                                      sample_size=sample_size,
                                      file_weights=file_weights)
    # embedding data, splitting up into train and test set
    processor = VectorProcessor(data_provider)
    generator = DeterministicGenerator(data_provider, processor)
    stopwatch = StopWatch()

    # training the word2vec net
    word2vec = Word2Vec(data_provider, FEATURES, DEVICE)
    word2vec.train(EPOCHS, BATCH_SIZE)
    # extracting weights and injecting them into the data provider
    data_provider.weights = torch.tensor(word2vec.get_weights())
    # generate dataset
    dataset = generator.generate_dataset()
    # train knn classifier
    classifier = KNNClassifier(data_provider, dataset, DEVICE)
    classifier.n_neighbours = N_NEIGHBORS
    classifier.train()
    # test the classifier
    test = ClassificationTest(dataset, classifier)
    stopwatch.start()
    result = test.test()
    stopwatch.stop()
    print(str(sample_size) + " Samples: " + str(result) + "% Präzision")
Exemplo n.º 2
0
from classification.KNNClassification import KNNClassifier
from classification.ClassificationTest import ClassificationTest
# script for corresponding test case
# most test cases should be able to be executed without any further changes, if data is available

FEATURES = 100
SAMPLE_SIZE = 10000
EPOCHS = 5
BATCH_SIZE = 32
# change device to "cpu" if cuda not available
DEVICE = "cuda"
stopwatch = StopWatch()
# pregenerated embedding and labels
file_words = open("../data/unique_equations.json")
file_labels = open("../data/unique_labels.json")
file_weights = open("../data/weights_0.json")
data_provider = DataProviderLight(file_words, file_labels, sample_size=SAMPLE_SIZE, file_weights=file_weights)
processor = VectorProcessor(data_provider)
generator = DeterministicGenerator(data_provider, processor)

w2v_epochs = Word2Vec(data_provider, FEATURES, DEVICE)
stopwatch.start()
w2v_epochs.train(EPOCHS, BATCH_SIZE)
stopwatch.stop()
data_provider.weights = torch.tensor(w2v_epochs.get_weights())
dataset = generator.generate_dataset()
classifier = KNNClassifier(data_provider, dataset, DEVICE)
classifier.n_neighbours = 5
classifier.train()
test = ClassificationTest(dataset, classifier)
print("Präzision: " + str(test.test()) + "%")