Exemplo n.º 1
0
    def _merge_data(batch):
        # C x H x W
        max_shape = tuple(
            max(img.shape[d] for img, _ in batch) for d in range(3))

        image_batch = []
        labels_batch = None
        if is_multi_label:
            labels_batch = []
        for image_idx, (img, anns) in enumerate(batch):
            temp = torch.zeros(max_shape, dtype=torch.float32)
            temp[:, :img.shape[1], :img.shape[2]] = img
            temp = normalize(temp)
            image_batch.append(temp)
            if is_multi_label:
                labels_batch.append(train_sets.handle_multi_label(anns))

        image_batch = torch.stack(image_batch, 0)
        anchors = generate_shifted_anchors(max_shape[1:])
        rgr, cls = anchor_targets_bbox(anchors,
                                       batch,
                                       len(train_sets.class2idx),
                                       multi_labels=labels_batch)
        reg = torch.from_numpy(rgr)
        cls = torch.from_numpy(cls)

        # [batch_size, channel, width, height]
        # [batch_size, all_anchors, num_classes+1]
        # [batch_size, all_anchors, num_values+1]
        return image_batch, cls, reg
Exemplo n.º 2
0
    def compute_targets(self, image_group, annotations_group):
        """
        Compute target outputs for the network using images and their annotations.
        """
        """
        Compute target outputs for the network using images and their annotations.
        """

        batches_targets = anchor_targets_bbox(self.anchors, image_group,
                                              annotations_group,
                                              self.num_classes())
        return list(batches_targets)
Exemplo n.º 3
0
    def compute_targets(self, image_group, annotations_group):
        """
        Compute target outputs for the network using images and their annotations.
        Args:
            image_group: List with images of a group/batch
            annotations_group: List with annotations of a group/batch
        Returns:
            List with the target batches for EfficientPose
        """

        batches_targets = anchor_targets_bbox(
            self.anchors,
            image_group,
            annotations_group,
            num_classes=self.num_classes(),
            num_rotation_parameters=self.rotation_parameter +
            2,  #+1 for the is_symmetric flag and +1 for the class idx to choose the correct model 3d points
            num_translation_parameters=self.
            translation_parameter,  #x,y in 2D and Tz
            translation_anchors=self.translation_anchors,
        )
        return list(batches_targets)