Exemplo n.º 1
0
    def flatten_64to1(semi, cell_size=8):
        """
        input: 
            semi: tensor[batch, cell_size*cell_size, Hc, Wc]
            (Hc = H/8)
        outpus:
            heatmap: tensor[batch, 1, H, W]
        """
        from utils.d2s import DepthToSpace

        depth2space = DepthToSpace(cell_size)
        heatmap = depth2space(semi)
        return heatmap
Exemplo n.º 2
0
def flattenDetection(semi, tensor=False):
    '''
    Flatten detection output

    :param semi:
        output from detector head
        tensor [65, Hc, Wc]
        :or
        tensor (batch_size, 65, Hc, Wc)

    :return:
        3D heatmap
        np (1, H, C)
        :or
        tensor (batch_size, 65, Hc, Wc)

    '''
    batch = False
    if len(semi.shape) == 4:
        batch = True
        batch_size = semi.shape[0]
    # if tensor:
    #     semi.exp_()
    #     d = semi.sum(dim=1) + 0.00001
    #     d = d.view(d.shape[0], 1, d.shape[1], d.shape[2])
    #     semi = semi / d  # how to /(64,15,20)

    #     nodust = semi[:, :-1, :, :]
    #     heatmap = flatten64to1(nodust, tensor=tensor)
    # else:
    # Convert pytorch -> numpy.
    # --- Process points.
    # dense = nn.functional.softmax(semi, dim=0) # [65, Hc, Wc]
    if batch:
        dense = nn.functional.softmax(semi, dim=1) # [batch, 65, Hc, Wc]
        # Remove dustbin.
        nodust = dense[:, :-1, :, :]
    else:
        dense = nn.functional.softmax(semi, dim=0) # [65, Hc, Wc]
        nodust = dense[:-1, :, :].unsqueeze(0)
    # Reshape to get full resolution heatmap.
    # heatmap = flatten64to1(nodust, tensor=True) # [1, H, W]
    depth2space = DepthToSpace(8)
    heatmap = depth2space(nodust)
    heatmap = heatmap.squeeze(0) if not batch else heatmap
    return heatmap