Exemplo n.º 1
0
class Detector(object):
    def __init__(self, opt):
        if opt.gpus[0] >= 0:
            opt.device = torch.device('cuda')
        else:
            opt.device = torch.device('cpu')

        print('Creating model...')
        self.model = create_model(opt.arch, opt.heads, opt.head_conv, opt=opt)
        self.model = load_model(self.model, opt.load_model, opt)
        self.model = self.model.to(opt.device)
        self.model.eval()

        self.opt = opt
        self.trained_dataset = get_dataset(opt.dataset)
        self.mean = np.array(self.trained_dataset.mean,
                             dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array(self.trained_dataset.std,
                            dtype=np.float32).reshape(1, 1, 3)
        self.pause = not opt.no_pause
        self.rest_focal_length = self.trained_dataset.rest_focal_length \
          if self.opt.test_focal_length < 0 else self.opt.test_focal_length
        self.flip_idx = self.trained_dataset.flip_idx
        self.cnt = 0
        self.pre_images = None
        self.pre_image_ori = None
        self.tracker = Tracker(opt)
        self.debugger = Debugger(opt=opt, dataset=self.trained_dataset)

    def run(self, image_or_path_or_tensor, meta={}):
        load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0
        merge_time, track_time, tot_time, display_time = 0, 0, 0, 0
        self.debugger.clear()
        start_time = time.time()

        # read image
        pre_processed = False
        if isinstance(image_or_path_or_tensor, np.ndarray):
            image = image_or_path_or_tensor
        elif type(image_or_path_or_tensor) == type(''):
            image = cv2.imread(image_or_path_or_tensor)
        else:
            image = image_or_path_or_tensor['image'][0].numpy()
            pre_processed_images = image_or_path_or_tensor
            pre_processed = True

        loaded_time = time.time()
        load_time += (loaded_time - start_time)

        detections = []

        # for multi-scale testing
        for scale in self.opt.test_scales:
            scale_start_time = time.time()
            if not pre_processed:
                # not prefetch testing or demo
                images, meta = self.pre_process(image, scale, meta)
            else:
                # prefetch testing
                images = pre_processed_images['images'][scale][0]
                meta = pre_processed_images['meta'][scale]
                meta = {k: v.numpy()[0] for k, v in meta.items()}
                if 'pre_dets' in pre_processed_images['meta']:
                    meta['pre_dets'] = pre_processed_images['meta']['pre_dets']
                if 'cur_dets' in pre_processed_images['meta']:
                    meta['cur_dets'] = pre_processed_images['meta']['cur_dets']

            images = images.to(self.opt.device,
                               non_blocking=self.opt.non_block_test)

            # initializing tracker
            pre_hms, pre_inds = None, None
            if self.opt.tracking:
                # initialize the first frame
                if self.pre_images is None:
                    print('Initialize tracking!')
                    self.pre_images = images
                    self.tracker.init_track(meta['pre_dets'] if 'pre_dets' in
                                            meta else [])
                if self.opt.pre_hm:
                    # render input heatmap from tracker status
                    # pre_inds is not used in the current version.
                    # We used pre_inds for learning an offset from previous image to
                    # the current image.
                    pre_hms, pre_inds = self._get_additional_inputs(
                        self.tracker.tracks,
                        meta,
                        with_hm=not self.opt.zero_pre_hm)

            pre_process_time = time.time()
            pre_time += pre_process_time - scale_start_time

            # run the network
            # output: the output feature maps, only used for visualizing
            # dets: output tensors after extracting peaks
            output, dets, forward_time = self.process(images,
                                                      self.pre_images,
                                                      pre_hms,
                                                      pre_inds,
                                                      return_time=True)
            net_time += forward_time - pre_process_time
            decode_time = time.time()
            dec_time += decode_time - forward_time

            # convert the cropped and 4x downsampled output coordinate system
            # back to the input image coordinate system
            result = self.post_process(dets, meta, scale)
            post_process_time = time.time()
            post_time += post_process_time - decode_time

            detections.append(result)
            if self.opt.debug >= 2:
                self.debug(self.debugger,
                           images,
                           result,
                           output,
                           scale,
                           pre_images=self.pre_images
                           if not self.opt.no_pre_img else None,
                           pre_hms=pre_hms)

        # merge multi-scale testing results
        results = self.merge_outputs(detections)
        if self.opt.gpus[0] >= 0:
            torch.cuda.synchronize()
        end_time = time.time()
        merge_time += end_time - post_process_time

        if self.opt.tracking:
            # public detection mode in MOT challenge
            public_det = meta['cur_dets'] if self.opt.public_det else None
            # add tracking id to results
            results = self.tracker.step(results, public_det)
            self.pre_images = images

        tracking_time = time.time()
        track_time += tracking_time - end_time
        tot_time += tracking_time - start_time

        if self.opt.debug >= 1:
            self.show_results(self.debugger, image, results)
        self.cnt += 1

        show_results_time = time.time()
        display_time += show_results_time - end_time

        # return results and run time
        ret = {
            'results': results,
            'tot': tot_time,
            'load': load_time,
            'pre': pre_time,
            'net': net_time,
            'dec': dec_time,
            'post': post_time,
            'merge': merge_time,
            'track': track_time,
            'display': display_time
        }
        if self.opt.save_video:
            try:
                # return debug image for saving video
                ret.update({'generic': self.debugger.imgs['generic']})
            except:
                pass
        return ret

    def _transform_scale(self, image, scale=1):
        '''
      Prepare input image in different testing modes.
        Currently support: fix short size/ center crop to a fixed size/ 
        keep original resolution but pad to a multiplication of 32
    '''
        height, width = image.shape[0:2]
        new_height = int(height * scale)
        new_width = int(width * scale)
        if self.opt.fix_short > 0:
            if height < width:
                inp_height = self.opt.fix_short
                inp_width = (int(width / height * self.opt.fix_short) +
                             63) // 64 * 64
            else:
                inp_height = (int(height / width * self.opt.fix_short) +
                              63) // 64 * 64
                inp_width = self.opt.fix_short
            c = np.array([width / 2, height / 2], dtype=np.float32)
            s = np.array([width, height], dtype=np.float32)
        elif self.opt.fix_res:
            inp_height, inp_width = self.opt.input_h, self.opt.input_w
            c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
            s = max(height, width) * 1.0
            # s = np.array([inp_width, inp_height], dtype=np.float32)
        else:
            inp_height = (new_height | self.opt.pad) + 1
            inp_width = (new_width | self.opt.pad) + 1
            c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
            s = np.array([inp_width, inp_height], dtype=np.float32)
        resized_image = cv2.resize(image, (new_width, new_height))
        return resized_image, c, s, inp_width, inp_height, height, width

    def pre_process(self, image, scale, input_meta={}):
        '''
    Crop, resize, and normalize image. Gather meta data for post processing 
      and tracking.
    '''
        resized_image, c, s, inp_width, inp_height, height, width = \
          self._transform_scale(image)
        trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
        out_height = inp_height // self.opt.down_ratio
        out_width = inp_width // self.opt.down_ratio
        trans_output = get_affine_transform(c, s, 0, [out_width, out_height])

        inp_image = cv2.warpAffine(resized_image,
                                   trans_input, (inp_width, inp_height),
                                   flags=cv2.INTER_LINEAR)
        inp_image = ((inp_image / 255. - self.mean) / self.std).astype(
            np.float32)

        images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height,
                                                      inp_width)
        if self.opt.flip_test:
            images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
        images = torch.from_numpy(images)
        meta = {'calib': np.array(input_meta['calib'], dtype=np.float32) \
                 if 'calib' in input_meta else \
                 self._get_default_calib(width, height)}
        meta.update({
            'c': c,
            's': s,
            'height': height,
            'width': width,
            'out_height': out_height,
            'out_width': out_width,
            'inp_height': inp_height,
            'inp_width': inp_width,
            'trans_input': trans_input,
            'trans_output': trans_output
        })
        if 'pre_dets' in input_meta:
            meta['pre_dets'] = input_meta['pre_dets']
        if 'cur_dets' in input_meta:
            meta['cur_dets'] = input_meta['cur_dets']
        return images, meta

    def _trans_bbox(self, bbox, trans, width, height):
        '''
    Transform bounding boxes according to image crop.
    '''
        bbox = np.array(copy.deepcopy(bbox), dtype=np.float32)
        bbox[:2] = affine_transform(bbox[:2], trans)
        bbox[2:] = affine_transform(bbox[2:], trans)
        bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1)
        bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1)
        return bbox

    def _get_additional_inputs(self, dets, meta, with_hm=True):
        '''
    Render input heatmap from previous trackings.
    '''
        trans_input, trans_output = meta['trans_input'], meta['trans_output']
        inp_width, inp_height = meta['inp_width'], meta['inp_height']
        out_width, out_height = meta['out_width'], meta['out_height']
        input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32)

        output_inds = []
        for det in dets:
            if det['score'] < self.opt.pre_thresh or det['active'] == 0:
                continue
            bbox = self._trans_bbox(det['bbox'], trans_input, inp_width,
                                    inp_height)
            bbox_out = self._trans_bbox(det['bbox'], trans_output, out_width,
                                        out_height)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if (h > 0 and w > 0):
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                if with_hm:
                    draw_umich_gaussian(input_hm[0], ct_int, radius)
                ct_out = np.array([(bbox_out[0] + bbox_out[2]) / 2,
                                   (bbox_out[1] + bbox_out[3]) / 2],
                                  dtype=np.int32)
                output_inds.append(ct_out[1] * out_width + ct_out[0])
        if with_hm:
            input_hm = input_hm[np.newaxis]
            if self.opt.flip_test:
                input_hm = np.concatenate((input_hm, input_hm[:, :, :, ::-1]),
                                          axis=0)
            input_hm = torch.from_numpy(input_hm).to(self.opt.device)
        output_inds = np.array(output_inds, np.int64).reshape(1, -1)
        output_inds = torch.from_numpy(output_inds).to(self.opt.device)
        return input_hm, output_inds

    def _get_default_calib(self, width, height):
        calib = np.array([[self.rest_focal_length, 0, width / 2, 0],
                          [0, self.rest_focal_length, height / 2, 0],
                          [0, 0, 1, 0]])
        return calib

    def _sigmoid_output(self, output):
        if 'hm' in output:
            output['hm'] = output['hm'].sigmoid_()
        if 'hm_hp' in output:
            output['hm_hp'] = output['hm_hp'].sigmoid_()
        if 'dep' in output:
            output['dep'] = 1. / (output['dep'].sigmoid() + 1e-6) - 1.
            output['dep'] *= self.opt.depth_scale
        return output

    def _flip_output(self, output):
        average_flips = ['hm', 'wh', 'dep', 'dim']  ##TODO consider tracking_wh
        neg_average_flips = ['amodel_offset']
        single_flips = [
            'ltrb', 'nuscenes_att', 'velocity', 'ltrb_amodal', 'reg',
            'hp_offset', 'rot', 'tracking', 'pre_hm'
        ]  ## TODO consider iou
        for head in output:
            if head in average_flips:
                output[head] = (output[head][0:1] +
                                flip_tensor(output[head][1:2])) / 2
            if head in neg_average_flips:
                flipped_tensor = flip_tensor(output[head][1:2])
                flipped_tensor[:, 0::2] *= -1
                output[head] = (output[head][0:1] + flipped_tensor) / 2
            if head in single_flips:
                output[head] = output[head][0:1]
            if head == 'hps':
                output['hps'] = (output['hps'][0:1] + flip_lr_off(
                    output['hps'][1:2], self.flip_idx)) / 2
            if head == 'hm_hp':
                output['hm_hp'] = (output['hm_hp'][0:1] + \
                  flip_lr(output['hm_hp'][1:2], self.flip_idx)) / 2

        return output

    def process(self,
                images,
                pre_images=None,
                pre_hms=None,
                pre_inds=None,
                return_time=False):
        with torch.no_grad():
            if self.opt.gpus[0] >= 0:
                torch.cuda.synchronize()
            output = self.model(images, pre_images, pre_hms)[-1]
            output = self._sigmoid_output(output)
            output.update({'pre_inds': pre_inds})
            if self.opt.flip_test:
                output = self._flip_output(output)
            if self.opt.gpus[0] >= 0:
                torch.cuda.synchronize()
            forward_time = time.time()

            dets = generic_decode(output, K=self.opt.K, opt=self.opt)
            if self.opt.gpus[0] >= 0:
                torch.cuda.synchronize()
            for k in dets:
                dets[k] = dets[k].detach().cpu().numpy()
        if return_time:
            return output, dets, forward_time
        else:
            return output, dets

    def post_process(self, dets, meta, scale=1):
        dets = generic_post_process(self.opt, dets, [meta['c']], [meta['s']],
                                    meta['out_height'], meta['out_width'],
                                    self.opt.num_classes, [meta['calib']],
                                    meta['height'], meta['width'])
        self.this_calib = meta['calib']

        if scale != 1:
            for i in range(len(dets[0])):
                for k in ['bbox', 'hps']:
                    if k in dets[0][i]:
                        dets[0][i][k] = (np.array(dets[0][i][k], np.float32) /
                                         scale).tolist()
        return dets[0]

    def merge_outputs(self, detections):
        assert len(self.opt.test_scales) == 1, 'multi_scale not supported!'
        results = []
        for i in range(len(detections[0])):
            if detections[0][i]['score'] > self.opt.out_thresh:
                results.append(detections[0][i])
        return results

    def debug(self,
              debugger,
              images,
              dets,
              output,
              scale=1,
              pre_images=None,
              pre_hms=None):
        img = images[0].detach().cpu().numpy().transpose(1, 2, 0)
        img = np.clip(((img * self.std + self.mean) * 255.), 0,
                      255).astype(np.uint8)
        pred = debugger.gen_colormap(output['hm'][0].detach().cpu().numpy())
        debugger.add_blend_img(img, pred, 'pred_hm')
        if 'hm_hp' in output:
            pred = debugger.gen_colormap_hp(
                output['hm_hp'][0].detach().cpu().numpy())
            debugger.add_blend_img(img, pred, 'pred_hmhp')

        if pre_images is not None:
            pre_img = pre_images[0].detach().cpu().numpy().transpose(1, 2, 0)
            pre_img = np.clip(((pre_img * self.std + self.mean) * 255.), 0,
                              255).astype(np.uint8)
            debugger.add_img(pre_img, 'pre_img')
            if pre_hms is not None:
                pre_hm = debugger.gen_colormap(
                    pre_hms[0].detach().cpu().numpy())
                debugger.add_blend_img(pre_img, pre_hm, 'pre_hm')

    def show_results(self, debugger, image, results):
        debugger.add_img(image, img_id='generic')
        # if self.opt.tracking:
        #   debugger.add_img(self.pre_image_ori if self.pre_image_ori is not None else image,
        #     img_id='previous')
        #   self.pre_image_ori = image

        for j in range(len(results)):
            if results[j]['score'] > self.opt.vis_thresh:
                if 'active' in results[j] and results[j]['active'] == 0:
                    continue
                item = results[j]
                if ('bbox' in item):
                    sc = item['score'] if self.opt.demo == '' or \
                      not ('tracking_id' in item) else item['tracking_id']
                    sc = item[
                        'tracking_id'] if self.opt.show_track_color else sc

                    debugger.add_coco_bbox(item['bbox'],
                                           item['class'] - 1,
                                           sc,
                                           img_id='generic')

                if 'tracking' in item:
                    debugger.add_arrow(item['ct'],
                                       item['tracking'],
                                       img_id='generic')

                tracking_id = item[
                    'tracking_id'] if 'tracking_id' in item else -1
                if 'tracking_id' in item and self.opt.demo == '' and \
                  not self.opt.show_track_color:
                    debugger.add_tracking_id(item['ct'],
                                             item['tracking_id'],
                                             img_id='generic')

                if (item['class'] in [1, 2]) and 'hps' in item:
                    debugger.add_coco_hp(item['hps'],
                                         tracking_id=tracking_id,
                                         img_id='generic')

        if len(results) > 0 and \
          'dep' in results[0] and 'alpha' in results[0] and 'dim' in results[0]:
            debugger.add_3d_detection(
                image if not self.opt.qualitative else cv2.resize(
                    debugger.imgs['pred_hm'],
                    (image.shape[1], image.shape[0])),
                False,
                results,
                self.this_calib,
                vis_thresh=self.opt.vis_thresh,
                img_id='ddd_pred')
            debugger.add_bird_view(results,
                                   vis_thresh=self.opt.vis_thresh,
                                   img_id='bird_pred',
                                   cnt=self.cnt)
            if self.opt.show_track_color and self.opt.debug == 4:
                del debugger.imgs['generic'], debugger.imgs['bird_pred']
        if 'ddd_pred' in debugger.imgs:
            debugger.imgs['generic'] = debugger.imgs['ddd_pred']
        if self.opt.debug == 4:
            debugger.save_all_imgs(self.opt.debug_dir,
                                   prefix='{}'.format(self.cnt))
        else:
            debugger.show_all_imgs(pause=self.pause)

    def reset_tracking(self):
        self.tracker.reset()
        self.pre_images = None
        self.pre_image_ori = None
Exemplo n.º 2
0
class Detector(object):
    def __init__(self, opt):
        if opt.gpus[0] >= 0:
            opt.device = torch.device("cuda")
        else:
            opt.device = torch.device("cpu")

        print("Creating model...")
        self.model = create_model(opt.arch, opt.heads, opt.head_conv, opt=opt)
        self.model = load_model(self.model, opt.load_model, opt)
        self.model = self.model.to(opt.device)
        self.model.eval()

        self.opt = opt
        self.trained_dataset = get_dataset(opt.dataset)
        self.mean = np.array(self.trained_dataset.mean,
                             dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array(self.trained_dataset.std,
                            dtype=np.float32).reshape(1, 1, 3)
        #     self.pause = not opt.no_pause
        self.rest_focal_length = (self.trained_dataset.rest_focal_length
                                  if self.opt.test_focal_length < 0 else
                                  self.opt.test_focal_length)
        self.flip_idx = self.trained_dataset.flip_idx
        self.cnt = 0
        self.pre_images = None
        self.pre_image_ori = None
        self.dataset = opt.dataset
        if self.dataset == "nuscenes":
            self.tracker = {}
            for class_name in NUSCENES_TRACKING_NAMES:
                self.tracker[class_name] = Tracker(opt, self.model)
        else:
            self.tracker = Tracker(opt, self.model)
        self.debugger = Debugger(opt=opt, dataset=self.trained_dataset)
        self.img_height = 100
        self.img_width = 100

    def run(self, image_or_path_or_tensor, meta={}, image_info=None):
        load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0
        merge_time, track_time, tot_time, display_time = 0, 0, 0, 0
        self.debugger.clear()
        start_time = time.time()

        # read image
        pre_processed = False
        if isinstance(image_or_path_or_tensor, np.ndarray):
            image = image_or_path_or_tensor
        elif type(image_or_path_or_tensor) == type(""):
            image = cv2.imread(image_or_path_or_tensor)
        else:
            image = image_or_path_or_tensor["image"][0].numpy()
            pre_processed_images = image_or_path_or_tensor
            pre_processed = True

        loaded_time = time.time()
        load_time += loaded_time - start_time

        detections = []

        # for multi-scale testing
        for scale in self.opt.test_scales:
            scale_start_time = time.time()
            if not pre_processed:
                # not prefetch testing or demo
                images, meta = self.pre_process(image, scale, meta)
            else:
                # prefetch testing
                images = pre_processed_images["images"][scale][0]
                meta = pre_processed_images["meta"][scale]
                meta = {k: v.numpy()[0] for k, v in meta.items()}
                if "pre_dets" in pre_processed_images["meta"]:
                    meta["pre_dets"] = pre_processed_images["meta"]["pre_dets"]
                if "cur_dets" in pre_processed_images["meta"]:
                    meta["cur_dets"] = pre_processed_images["meta"]["cur_dets"]

            images = images.to(self.opt.device,
                               non_blocking=self.opt.non_block_test)

            # initializing tracker
            pre_hms, pre_inds = None, None

            pre_process_time = time.time()
            pre_time += pre_process_time - scale_start_time

            # run the network
            # output: the output feature maps, only used for visualizing
            # dets: output tensors after extracting peaks
            output, dets, forward_time, FeatureMaps = self.process(
                images, self.pre_images, pre_hms, pre_inds, return_time=True)
            net_time += forward_time - pre_process_time
            decode_time = time.time()
            dec_time += decode_time - forward_time

            # convert the cropped and 4x downsampled output coordinate system
            # back to the input image coordinate system
            result = self.post_process(dets, meta, scale)
            post_process_time = time.time()
            post_time += post_process_time - decode_time

            detections.append(result)
            if self.opt.debug >= 2:
                self.debug(
                    self.debugger,
                    images,
                    result,
                    output,
                    scale,
                    pre_images=self.pre_images
                    if not self.opt.no_pre_img else None,
                    pre_hms=pre_hms,
                )

        # merge multi-scale testing results
        results = self.merge_outputs(detections)
        torch.cuda.synchronize()
        end_time = time.time()
        merge_time += end_time - post_process_time

        # public detection mode in MOT challenge
        if self.opt.public_det:
            results = (pre_processed_images["meta"]["cur_dets"]
                       if self.opt.public_det else None)

        if self.dataset == "nuscenes":
            trans_matrix = np.array(image_info["trans_matrix"], np.float32)

            results_by_class = {}
            ddd_boxes_by_class = {}
            depths_by_class = {}
            ddd_boxes_by_class2 = {}
            ddd_org_boxes_by_class = {}
            ddd_box_submission1 = {}
            ddd_box_submission2 = {}
            for class_name in NUSCENES_TRACKING_NAMES:
                results_by_class[class_name] = []
                ddd_boxes_by_class2[class_name] = []
                ddd_boxes_by_class[class_name] = []
                depths_by_class[class_name] = []
                ddd_org_boxes_by_class[class_name] = []
                ddd_box_submission1[class_name] = []
                ddd_box_submission2[class_name] = []
            for det in results:
                cls_id = int(det["class"])
                class_name = nuscenes_class_name[cls_id - 1]
                if class_name not in NUSCENES_TRACKING_NAMES:
                    continue

                if det["score"] < 0.3:
                    continue
                if class_name == "pedestrian" and det["score"] < 0.35:
                    continue
                results_by_class[class_name].append(det["bbox"].tolist() +
                                                    [det["score"]])
                size = [
                    float(det["dim"][1]),
                    float(det["dim"][2]),
                    float(det["dim"][0]),
                ]
                rot_cam = Quaternion(axis=[0, 1, 0], angle=det["rot_y"])
                translation_submission1 = np.dot(
                    trans_matrix,
                    np.array(
                        [
                            det["loc"][0], det["loc"][1] - size[2],
                            det["loc"][2], 1
                        ],
                        np.float32,
                    ),
                ).copy()

                loc = np.array([det["loc"][0], det["loc"][1], det["loc"][2]],
                               np.float32)
                depths_by_class[class_name].append([float(det["loc"][2])
                                                    ].copy())
                trans = [det["loc"][0], det["loc"][1], det["loc"][2]]

                ddd_org_boxes_by_class[class_name].append([
                    float(det["dim"][0]),
                    float(det["dim"][1]),
                    float(det["dim"][2])
                ] + trans + [det["rot_y"]])

                box = Box(loc, size, rot_cam, name="2", token="1")
                box.translate(np.array([0, -box.wlh[2] / 2, 0]))
                box.rotate(Quaternion(image_info["cs_record_rot"]))
                box.translate(np.array(image_info["cs_record_trans"]))
                box.rotate(Quaternion(image_info["pose_record_rot"]))
                box.translate(np.array(image_info["pose_record_trans"]))
                rotation = box.orientation
                rotation = [
                    float(rotation.w),
                    float(rotation.x),
                    float(rotation.y),
                    float(rotation.z),
                ]

                ddd_box_submission1[class_name].append([
                    float(translation_submission1[0]),
                    float(translation_submission1[1]),
                    float(translation_submission1[2]),
                ].copy() + size.copy() + rotation.copy())

                q = Quaternion(rotation)
                angle = q.angle if q.axis[2] > 0 else -q.angle

                ddd_boxes_by_class[class_name].append([
                    size[2],
                    size[0],
                    size[1],
                    box.center[0],
                    box.center[1],
                    box.center[2],
                    angle,
                ].copy())

            online_targets = []
            for class_name in NUSCENES_TRACKING_NAMES:
                if len(results_by_class[class_name]) > 0 and NMS:
                    boxess = torch.from_numpy(
                        np.array(results_by_class[class_name])[:, :4])
                    scoress = torch.from_numpy(
                        np.array(results_by_class[class_name])[:, -1])
                    if class_name == "bus" or class_name == "truck":
                        ovrlp = 0.7
                    else:
                        ovrlp = 0.8
                    keep, count = nms(boxess, scoress, overlap=ovrlp)

                    keep = keep.data.numpy().tolist()
                    keep = sorted(set(keep))
                    results_by_class[class_name] = np.array(
                        results_by_class[class_name])[keep]

                    ddd_boxes_by_class[class_name] = np.array(
                        ddd_boxes_by_class[class_name])[keep]
                    depths_by_class[class_name] = np.array(
                        depths_by_class[class_name])[keep]
                    ddd_org_boxes_by_class[class_name] = np.array(
                        ddd_org_boxes_by_class[class_name])[keep]
                    ddd_box_submission1[class_name] = np.array(
                        ddd_box_submission1[class_name])[keep]

                online_targets += self.tracker[class_name].update(
                    results_by_class[class_name],
                    FeatureMaps,
                    ddd_boxes=ddd_boxes_by_class[class_name],
                    depths_by_class=depths_by_class[class_name],
                    ddd_org_boxes=ddd_org_boxes_by_class[class_name],
                    submission=ddd_box_submission1[class_name],
                    classe=class_name,
                )

        else:

            online_targets = self.tracker.update(results, FeatureMaps)

        return online_targets

    def _transform_scale(self, image, scale=1):
        """
      Prepare input image in different testing modes.
        Currently support: fix short size/ center crop to a fixed size/
        keep original resolution but pad to a multiplication of 32
    """
        height, width = image.shape[0:2]
        new_height = int(height * scale)
        new_width = int(width * scale)
        if self.opt.fix_short > 0:
            if height < width:
                inp_height = self.opt.fix_short
                inp_width = (int(width / height * self.opt.fix_short) +
                             63) // 64 * 64
            else:
                inp_height = (int(height / width * self.opt.fix_short) +
                              63) // 64 * 64
                inp_width = self.opt.fix_short
            c = np.array([width / 2, height / 2], dtype=np.float32)
            s = np.array([width, height], dtype=np.float32)
        elif self.opt.fix_res:
            inp_height, inp_width = self.opt.input_h, self.opt.input_w
            c = np.array([new_width / 2.0, new_height / 2.0], dtype=np.float32)
            s = max(height, width) * 1.0
            # s = np.array([inp_width, inp_height], dtype=np.float32)
        else:
            inp_height = (new_height | self.opt.pad) + 1
            inp_width = (new_width | self.opt.pad) + 1
            c = np.array([new_width // 2, new_height // 2], dtype=np.float32)
            s = np.array([inp_width, inp_height], dtype=np.float32)
        resized_image = cv2.resize(image, (new_width, new_height))
        return resized_image, c, s, inp_width, inp_height, height, width

    def pre_process(self, image, scale, input_meta={}):
        """
    Crop, resize, and normalize image. Gather meta data for post processing
      and tracking.
    """
        resized_image, c, s, inp_width, inp_height, height, width = self._transform_scale(
            image)
        trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
        out_height = inp_height // self.opt.down_ratio
        out_width = inp_width // self.opt.down_ratio
        trans_output = get_affine_transform(c, s, 0, [out_width, out_height])

        inp_image = cv2.warpAffine(resized_image,
                                   trans_input, (inp_width, inp_height),
                                   flags=cv2.INTER_LINEAR)
        inp_image = ((inp_image / 255.0 - self.mean) / self.std).astype(
            np.float32)

        images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height,
                                                      inp_width)
        if self.opt.flip_test:
            images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
        images = torch.from_numpy(images)
        meta = {
            "calib":
            np.array(input_meta["calib"], dtype=np.float32) if "calib"
            in input_meta else self._get_default_calib(width, height)
        }
        meta.update({
            "c": c,
            "s": s,
            "height": height,
            "width": width,
            "out_height": out_height,
            "out_width": out_width,
            "inp_height": inp_height,
            "inp_width": inp_width,
            "trans_input": trans_input,
            "trans_output": trans_output,
        })
        if "pre_dets" in input_meta:
            meta["pre_dets"] = input_meta["pre_dets"]
        if "cur_dets" in input_meta:
            meta["cur_dets"] = input_meta["cur_dets"]
        return images, meta

    def _trans_bbox(self, bbox, trans, width, height):
        """
    Transform bounding boxes according to image crop.
    """
        bbox = np.array(copy.deepcopy(bbox), dtype=np.float32)
        bbox[:2] = affine_transform(bbox[:2], trans)
        bbox[2:] = affine_transform(bbox[2:], trans)
        bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1)
        bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1)
        return bbox

    def _get_additional_inputs(self, dets, meta, with_hm=True):
        """
    Render input heatmap from previous trackings.
    """
        trans_input, trans_output = meta["trans_input"], meta["trans_output"]
        inp_width, inp_height = meta["inp_width"], meta["inp_height"]
        out_width, out_height = meta["out_width"], meta["out_height"]
        input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32)

        output_inds = []
        for det in dets:
            if det["score"] < self.opt.pre_thresh or det["active"] == 0:
                continue
            bbox = self._trans_bbox(det["bbox"], trans_input, inp_width,
                                    inp_height)
            bbox_out = self._trans_bbox(det["bbox"], trans_output, out_width,
                                        out_height)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if h > 0 and w > 0:
                radius = gaussian_radius((math.ceil(h), math.ceil(w)))
                radius = max(0, int(radius))
                ct = np.array([(bbox[0] + bbox[2]) / 2,
                               (bbox[1] + bbox[3]) / 2],
                              dtype=np.float32)
                ct_int = ct.astype(np.int32)
                if with_hm:
                    draw_umich_gaussian(input_hm[0], ct_int, radius)
                ct_out = np.array(
                    [(bbox_out[0] + bbox_out[2]) / 2,
                     (bbox_out[1] + bbox_out[3]) / 2],
                    dtype=np.int32,
                )
                output_inds.append(ct_out[1] * out_width + ct_out[0])
        if with_hm:
            input_hm = input_hm[np.newaxis]
            if self.opt.flip_test:
                input_hm = np.concatenate((input_hm, input_hm[:, :, :, ::-1]),
                                          axis=0)
            input_hm = torch.from_numpy(input_hm).to(self.opt.device)
        output_inds = np.array(output_inds, np.int64).reshape(1, -1)
        output_inds = torch.from_numpy(output_inds).to(self.opt.device)
        return input_hm, output_inds

    def _get_default_calib(self, width, height):
        calib = np.array([
            [self.rest_focal_length, 0, width / 2, 0],
            [0, self.rest_focal_length, height / 2, 0],
            [0, 0, 1, 0],
        ])
        return calib

    def _sigmoid_output(self, output):
        if "hm" in output:
            output["hm"] = output["hm"].sigmoid_()
        if "hm_hp" in output:
            output["hm_hp"] = output["hm_hp"].sigmoid_()
        if "dep" in output:
            output["dep"] = 1.0 / (output["dep"].sigmoid() + 1e-6) - 1.0
            output["dep"] *= self.opt.depth_scale
        return output

    def _flip_output(self, output):
        average_flips = ["hm", "wh", "dep", "dim"]
        neg_average_flips = ["amodel_offset"]
        single_flips = [
            "ltrb",
            "nuscenes_att",
            "velocity",
            "ltrb_amodal",
            "reg",
            "hp_offset",
            "rot",
            "tracking",
            "pre_hm",
        ]
        for head in output:
            if head in average_flips:
                output[head] = (output[head][0:1] +
                                flip_tensor(output[head][1:2])) / 2
            if head in neg_average_flips:
                flipped_tensor = flip_tensor(output[head][1:2])
                flipped_tensor[:, 0::2] *= -1
                output[head] = (output[head][0:1] + flipped_tensor) / 2
            if head in single_flips:
                output[head] = output[head][0:1]
            if head == "hps":
                output["hps"] = (output["hps"][0:1] + flip_lr_off(
                    output["hps"][1:2], self.flip_idx)) / 2
            if head == "hm_hp":
                output["hm_hp"] = (output["hm_hp"][0:1] + flip_lr(
                    output["hm_hp"][1:2], self.flip_idx)) / 2

        return output

    def process(self,
                images,
                pre_images=None,
                pre_hms=None,
                pre_inds=None,
                return_time=False):
        with torch.no_grad():
            torch.cuda.synchronize()
            output, FeatureMaps = self.model(images, pre_images, pre_hms)
            output = output[-1]
            output = self._sigmoid_output(output)
            output.update({"pre_inds": pre_inds})
            if self.opt.flip_test:
                output = self._flip_output(output)
            torch.cuda.synchronize()
            forward_time = time.time()

            dets = generic_decode(output, K=self.opt.K, opt=self.opt)
            torch.cuda.synchronize()
            for k in dets:
                dets[k] = dets[k].detach().cpu().numpy()
        if return_time:
            return output, dets, forward_time, FeatureMaps
        else:
            return output, dets, FeatureMaps

    def post_process(self, dets, meta, scale=1):
        dets = generic_post_process(
            self.opt,
            dets,
            [meta["c"]],
            [meta["s"]],
            meta["out_height"],
            meta["out_width"],
            self.opt.num_classes,
            [meta["calib"]],
            meta["height"],
            meta["width"],
        )
        self.this_calib = meta["calib"]

        if scale != 1:
            for i in range(len(dets[0])):
                for k in ["bbox", "hps"]:
                    if k in dets[0][i]:
                        dets[0][i][k] = (np.array(dets[0][i][k], np.float32) /
                                         scale).tolist()
        return dets[0]

    def merge_outputs(self, detections):
        assert len(self.opt.test_scales) == 1, "multi_scale not supported!"
        results = []
        for i in range(len(detections[0])):
            if detections[0][i]["score"] > self.opt.out_thresh:
                results.append(detections[0][i])
        return results

    def debug(self,
              debugger,
              images,
              dets,
              output,
              scale=1,
              pre_images=None,
              pre_hms=None):
        img = images[0].detach().cpu().numpy().transpose(1, 2, 0)
        img = np.clip(((img * self.std + self.mean) * 255.0), 0,
                      255).astype(np.uint8)
        pred = debugger.gen_colormap(output["hm"][0].detach().cpu().numpy())
        debugger.add_blend_img(img, pred, "pred_hm")
        if "hm_hp" in output:
            pred = debugger.gen_colormap_hp(
                output["hm_hp"][0].detach().cpu().numpy())
            debugger.add_blend_img(img, pred, "pred_hmhp")

        if pre_images is not None:
            pre_img = pre_images[0].detach().cpu().numpy().transpose(1, 2, 0)
            pre_img = np.clip(((pre_img * self.std + self.mean) * 255.0), 0,
                              255).astype(np.uint8)
            debugger.add_img(pre_img, "pre_img")
            if pre_hms is not None:
                pre_hm = debugger.gen_colormap(
                    pre_hms[0].detach().cpu().numpy())
                debugger.add_blend_img(pre_img, pre_hm, "pre_hm")

    def show_results(self, debugger, image, results):
        debugger.add_img(image, img_id="generic")
        if self.opt.tracking:
            debugger.add_img(
                self.pre_image_ori
                if self.pre_image_ori is not None else image,
                img_id="previous",
            )
            self.pre_image_ori = image

        for j in range(len(results)):
            if results[j]["score"] > self.opt.vis_thresh:
                if "active" in results[j] and results[j]["active"] == 0:
                    continue
                item = results[j]
                if "bbox" in item:
                    sc = (item["score"] if self.opt.demo == "" or
                          not ("tracking_id" in item) else item["tracking_id"])
                    sc = item[
                        "tracking_id"] if self.opt.show_track_color else sc

                    debugger.add_coco_bbox(item["bbox"],
                                           item["class"] - 1,
                                           sc,
                                           img_id="generic")

                if "tracking" in item:
                    debugger.add_arrow(item["ct"],
                                       item["tracking"],
                                       img_id="generic")

                tracking_id = item[
                    "tracking_id"] if "tracking_id" in item else -1
                if ("tracking_id" in item and self.opt.demo == ""
                        and not self.opt.show_track_color):
                    debugger.add_tracking_id(item["ct"],
                                             item["tracking_id"],
                                             img_id="generic")

                if (item["class"] in [1, 2]) and "hps" in item:
                    debugger.add_coco_hp(item["hps"],
                                         tracking_id=tracking_id,
                                         img_id="generic")

        if (len(results) > 0 and "dep" in results[0] and "alpha" in results[0]
                and "dim" in results[0]):
            debugger.add_3d_detection(
                image if not self.opt.qualitative else cv2.resize(
                    debugger.imgs["pred_hm"],
                    (image.shape[1], image.shape[0])),
                False,
                results,
                self.this_calib,
                vis_thresh=self.opt.vis_thresh,
                img_id="ddd_pred",
            )
            debugger.add_bird_view(
                results,
                vis_thresh=self.opt.vis_thresh,
                img_id="bird_pred",
                cnt=self.cnt,
            )
            if self.opt.show_track_color and self.opt.debug == 4:
                del debugger.imgs["generic"], debugger.imgs["bird_pred"]

    def reset_tracking(self, opt):
        if self.dataset == "nuscenes":
            self.tracker = {}
            for class_name in NUSCENES_TRACKING_NAMES:
                self.tracker[class_name] = Tracker(opt,
                                                   self.model,
                                                   h=self.img_height,
                                                   w=self.img_width)
        else:
            self.tracker = Tracker(opt,
                                   self.model,
                                   h=self.img_height,
                                   w=self.img_width)
        self.pre_images = None
        self.pre_image_ori = None

    def update_public_detections(self, detections_file):

        self.det_file = pd.read_csv(detections_file, header=None, sep=" ")
        self.det_group = self.det_file.groupby(0)
        self.det_group_keys = self.det_group.indices.keys()