Exemplo n.º 1
0
def get_depth_coord_sample(labelweights, image_path, depth_path, label_path,
                           int_param, rotation, translation):
    color_img = Image.open(image_path)  # load color
    color_img = np.array(color_img)
    label_img = Image.open(label_path)  # load label
    label_img = np.array(label_img)
    label_img = np.expand_dims(label_img, axis=-1)
    # detph to camera xyz
    depth_img = np.load(depth_path)['depth']  # load depth
    assert color_img.shape[0:2] == label_img.shape[0:2] == depth_img.shape[0:2],\
           'height, width not equal corlor {}, label {}, depth {}'\
           .format(color_img.shape, label_img.shape, depth_img.shape)
    height = depth_img.shape[0]
    width = depth_img.shape[1]
    #pixel_z = np.array(depth_img) / 1000.0
    pixel_z = np.squeeze(depth_img, axis=-1)
    valid_idx = (pixel_z != 0)
    pixel_x, pixel_y = np.meshgrid(np.linspace(0, width, width, endpoint=False), \
                                   np.linspace(0, height, height, endpoint=False))
    cx = int_param[0, 2] * (width / (int_param[0, 2] * 2))
    fx = int_param[0, 0] * (width / (int_param[0, 2] * 2))
    cy = int_param[1, 2] * (height / (int_param[1, 2] * 2))
    fy = int_param[1, 1] * (height / (int_param[1, 2] * 2))
    pixel_x = pixel_z * (pixel_x - cx) / fx
    pixel_y = pixel_z * (pixel_y - cy) / fy
    pixel_x = np.expand_dims(pixel_x, axis=-1)
    pixel_y = np.expand_dims(pixel_y, axis=-1)
    pixel_z = np.expand_dims(pixel_z, axis=-1)
    pixel_xyz = np.concatenate((pixel_x, pixel_y, pixel_z), axis=-1)
    # depth world xyz without translation
    coord_img = pixel_xyz.reshape(-1, 3)
    valid_pts = np.where(coord_img[:, 2] != 0)[0]
    #print(valid_pts)
    coord_img = np.matmul(rotation, coord_img.T).T
    coord_xy_center = np.mean(coord_img[valid_pts, 0:2], axis=0)
    coord_img[valid_pts, 0:2] = coord_img[valid_pts, 0:2] - coord_xy_center
    # align
    x_vec = np.array([[1.], [0.], [0.]])
    x_rotated = np.matmul(rotation, x_vec)
    x_rotated[2, 0] = 0.
    horizontal_shift = np.arccos(np.matmul(x_rotated.T, x_vec))
    if x_rotated[1, 0] > 0:
        align_z = eua.euler2mat(z=-horizontal_shift, y=0, x=0)
    else:
        align_z = eua.euler2mat(z=horizontal_shift, y=0, x=0)
    coord_img = np.matmul(align_z, coord_img.T).T
    coord_img[valid_pts, 2] = coord_img[valid_pts, 2] + translation[2]
    # reshape to image shape
    coord_img = coord_img.reshape(height, width, 3)
    coord_img = np.concatenate([coord_img, color_img], axis=-1)
    # coord weight
    pixel_weight = labelweights[label_img.reshape(-1)]  # get pixel weight
    coord_weight = pixel_weight.reshape((height, width, 1)) * \
                   np.expand_dims(valid_idx.astype(np.int32), axis=-1)
    #print('from depth', coord_img.shape, label_img.shape, coord_weight.shape, valid_idx.shape)
    return coord_img, label_img, coord_weight, valid_idx
Exemplo n.º 2
0
def draw_point_cloud(input_points, canvasSize=500, space=200, diameter=25,
                     xrot=0, yrot=0, zrot=0, switch_xyz=[0, 1, 2], normalize=True):
    """ Render point cloud to image with alpha channel.
        Input:
            points: Nx3 numpy array (+y is up direction)
        Output:
            gray image as numpy array of size canvasSizexcanvasSize
    """
    image = np.zeros((canvasSize, canvasSize))
    if input_points is None or input_points.shape[0] == 0:
        return image

    points = input_points[:, switch_xyz]
    M = euler2mat(zrot, yrot, xrot)
    points = (np.dot(M, points.transpose())).transpose()

    # Normalize the point cloud
    # We normalize scale to fit points in a unit sphere
    if normalize:
        centroid = np.mean(points, axis=0)
        points -= centroid
        furthest_distance = np.max(np.sqrt(np.sum(abs(points) ** 2, axis=-1)))
        points /= furthest_distance

    # Pre-compute the Gaussian disk
    radius = (diameter - 1) / 2.0
    disk = np.zeros((diameter, diameter))
    for i in range(diameter):
        for j in range(diameter):
            if (i - radius) * (i - radius) + (j - radius) * (j - radius) <= radius * radius:
                disk[i, j] = np.exp((-(i - radius) ** 2 - (j - radius) ** 2) / (radius ** 2))
    mask = np.argwhere(disk > 0)
    dx = mask[:, 0]
    dy = mask[:, 1]
    dv = disk[disk > 0]

    # Order points by z-buffer
    zorder = np.argsort(points[:, 2])
    points = points[zorder, :]
    points[:, 2] = (points[:, 2] - np.min(points[:, 2])) / (np.max(points[:, 2] - np.min(points[:, 2])))
    max_depth = np.max(points[:, 2])

    for i in range(points.shape[0]):
        j = points.shape[0] - i - 1
        x = points[j, 0]
        y = points[j, 1]
        xc = canvasSize / 2 + (x * space)
        yc = canvasSize / 2 + (y * space)
        xc = int(np.round(xc))
        yc = int(np.round(yc))

        px = dx + xc
        py = dy + yc

        image[px, py] = image[px, py] * 0.7 + dv * (max_depth - points[j, 2]) * 0.3

    image = image / np.max(image)
    return image
Exemplo n.º 3
0
def data_argment(train_data):

    # Enriched Normailzation

    # Rotate through X-axis
    out_data = []
    for xrot in (np.arange(-1, 1, 0.25) * math.pi):
        M = euler2mat(0, xrot, 0)
        out_data.append(np.dot(train_data, M.transpose()))
    return np.concatenate(out_data)
Exemplo n.º 4
0
def get_coord_sample(labelweights, image_path, pixcoord_path, label_path,
                     int_param, rotation, translation):
    color_img = Image.open(image_path)  # load color
    color_img = np.array(color_img)
    label_img = Image.open(label_path)  # load label
    label_img = np.array(label_img)
    label_img = np.expand_dims(label_img, axis=-1)
    # detph to camera xyz
    pixcoord_img = np.load(pixcoord_path)['pixcoord']  # load depth
    assert color_img.shape[0:2] == label_img.shape[0:2] == pixcoord_img.shape[0:2],\
           'height, width not equal corlor {}, label {}, pixel coord {}'\
           .format(color_img.shape, label_img.shape, pixcoord_img.shape)
    height = pixcoord_img.shape[0]
    width = pixcoord_img.shape[1]
    #pixel_z = np.array(depth_img) / 1000.0
    valid_idx = np.sum(pixcoord_img != np.array([0, 0, 0]), axis=-1) > 0
    coord_img = pixcoord_img.reshape(-1, 3)
    valid_pts = np.where(coord_img != np.array([0, 0, 0]))[0]
    #coord_img[valid_idx] = coord_img[valid_idx] - translation
    #coord_img = np.matmul(np.linalg.inv(rotation),coord_img[valid_idx].T)
    # depth world xyz without translation
    coord_xy_center = np.mean(coord_img[valid_pts, 0:2], axis=0)
    coord_img[valid_pts, 0:2] = coord_img[valid_pts, 0:2] - coord_xy_center
    # align
    x_vec = np.array([[1.], [0.], [0.]])
    x_rotated = np.matmul(rotation, x_vec)
    x_rotated[2, 0] = 0.
    horizontal_shift = np.arccos(np.matmul(x_rotated.T, x_vec))
    if x_rotated[1, 0] > 0:
        align_z = eua.euler2mat(z=-horizontal_shift, y=0, x=0)
    else:
        align_z = eua.euler2mat(z=horizontal_shift, y=0, x=0)
    coord_img = np.matmul(align_z, coord_img.T).T
    # reshape to image shape
    coord_img = coord_img.reshape(height, width, 3)
    coord_img = np.concatenate([coord_img, color_img], axis=-1)
    # coord weight
    pixel_weight = labelweights[label_img.reshape(-1)]  # get pixel weight
    coord_weight = pixel_weight.reshape((height, width, 1)) * \
                   np.expand_dims(valid_idx.astype(np.int32), axis=-1)
    #print('from coord', coord_img.shape, label_img.shape, coord_weight.shape, valid_idx.shape)
    return coord_img, label_img, coord_weight, valid_idx
Exemplo n.º 5
0
def main():

    opt = parse_config()
    if opt.net_type == "default_residual":
        opt.net_type = "default"
        opt.hidden_size = [[
            64, 64, 64, 128, 128, 128, 256, 256, 256, 512, 1024
        ], [512, 256, 256, 256, 64, 64, 64]]
    elif opt.net_type == "default_big":
        opt.net_type = "default"
        opt.hidden_size = [[64, 128, 256, 512, 1024, 2048],
                           [1024, 512, 256, 64]]
    opt.swap_axis = True
    opt.do_evaluation = 0
    np.random.seed(opt.seed)
    if opt.cuda == 1:
        os.environ["CUDA_VISIBLE_DEVICES"] = "1"

    # Prepare training data

    categories = [
        "toilet", "table", "sofa", "night_stand", "monitor", "dresser", "desk",
        "chair", "bed", "bathtub"
    ]
    train_data, train_labels, train_idx = [], [], []
    for idx, cat in enumerate(categories):
        d = np.load('data/%s_train.npy' % cat)
        train_data.append(d)
        train_labels.append(np.ones(d.shape[0]) * idx)
        train_idx.append(np.array([idx * 10000 + i
                                   for i in range(d.shape[0])]))
    train_data = np.concatenate(train_data)
    train_labels = np.concatenate(train_labels)
    train_idx = np.concatenate(train_idx)
    if opt.argment_mode:
        print("Argment data by rotating through x axis. %d Data" %
              len(train_data))
        out_data = []
        for xrot in (np.arange(-1, 1, 0.25) * math.pi):
            M = euler2mat(0, xrot, 0)
            out_data.append(np.dot(train_data, M.transpose()))
        train_data = np.concatenate(out_data).astype(np.float32)
        train_labels = train_labels.repeat(8, axis=0)
        train_idx = train_idx.repeat(8, axis=0)
        print("Argmented. %d Data" % len(train_data))

    idx = np.random.permutation(train_data.shape[0])
    train_data = train_data[idx, :opt.num_point]
    train_labels = train_labels[idx]
    train_idx = train_idx[idx]
    np.save("%s/train_idx.npy" % opt.output_dir, idx)

    test_data, test_labels = [], []
    for idx, cat in enumerate(categories):
        d = np.load('data/%s_test.npy' % cat)
        test_data.append(d)
        test_labels.append(np.ones(d.shape[0]) * idx)
    test_data = np.concatenate(test_data)
    test_labels = np.concatenate(test_labels)
    idx = np.random.permutation(test_data.shape[0])
    test_data = test_data[idx, :opt.num_point]
    test_labels = test_labels[idx]
    np.save("%s/train_labels.npy" % opt.output_dir, train_labels)
    np.save("%s/test_labels.npy" % opt.output_dir, test_labels)

    max_val = train_data.max()
    min_val = train_data.min()
    train_data = ((train_data - min_val) / (max_val - min_val)) * 2 - 1
    test_data = ((test_data - min_val) / (max_val - min_val)) * 2 - 1

    if opt.tpp and os.path.exists(opt.output_dir + "/train_feature.npy"):
        train_feature = np.load(opt.output_dir + "/train_feature.npy")
        test_feature = np.load(opt.output_dir + "/test_feature.npy")
        print("pretrained data loaded.")
        print(train_feature.shape)
        if opt.robust_test:
            model = load_model(opt)
    else:
        model = load_model(opt)
        train_feature = extract_feature(opt, model, train_data)
        test_feature = extract_feature(opt, model, test_data)
        np.save(opt.output_dir + "/train_feature.npy", train_feature)
        np.save(opt.output_dir + "/test_feature.npy", test_feature)

    # voxel_mean = train_feature.mean()
    # voxel_var = np.sqrt(train_feature.var())
    # voxel_mean = np.mean(train_feature, 0, keepdims=True)
    # voxel_var = np.sqrt(np.var(train_feature, 0, keepdims=True))
    # train_feature = (train_feature - voxel_mean) / voxel_var
    # test_feature = (test_feature - voxel_mean) / voxel_var
    if opt.robust_test:
        robust_test(opt, model, train_feature, train_labels, test_feature,
                    test_labels, test_data)
    else:
        train_svm_par(train_feature, train_labels, test_feature, test_labels)
Exemplo n.º 6
0
def load_data(category, arg_mode):

    cate_temp = category.split("_")[0]
    train_data = []
    if cate_temp == "modelnet40":
        categories = [
            'cup', 'bookshelf', 'lamp', 'stool', 'desk', 'toilet',
            'night_stand', 'bowl', 'door', 'flower_pot', 'plant', 'stairs',
            'bottle', 'mantel', 'sofa', 'laptop', 'xbox', 'tent', 'piano',
            'car', 'wardrobe', 'tv_stand', 'cone', 'range_hood', 'bathtub',
            'curtain', 'sink', 'glass_box', 'bed', 'chair', 'person', 'radio',
            'dresser', 'bench', 'airplane', 'guitar', 'keyboard', 'table',
            'monitor', 'vase'
        ]
        for cat in categories:
            d = np.load('data/%s_train.npy' % cat)
            print(d.var(), d.mean(), d.max(), d.min())
            train_data.append(d)
    elif cate_temp == "modelnet10":
        for cat in categories:
            d = np.load('data/%s_train.npy' % cat)
            print(d.var(), d.mean(), d.max(), d.min())
            train_data.append(d)
    elif cate_temp == "partnet":
        partnet_base = "/home/fei960922/Documents/Dataset/PointCloud/partnet/sem_seg_h5"
        if len(category.split("_")) > 1:
            categories = [category.split("_")[1]]
        else:
            categories = os.listdir(partnet_base)
        for cat in categories:
            for name in [
                    s for s in os.listdir("%s/%s" % (partnet_base, cat))
                    if s[:3] == "tra" and s[-1] == "5"
            ]:
                h5file = h5py.File("%s/%s/%s" % (partnet_base, cat, name))
                d = np.asarray(h5file['data'])
                # seg = h5file['label_seg']
                print(d.shape, d.var(), d.mean(), d.max(), d.min())
                train_data.append(d)
    elif cate_temp == "shapenetpart":
        pcd, label, seg = [], [], []
        for i in range(10):
            try:
                f = h5py.File("data/hdf5_data/ply_data_train%d.h5" % i)
                pcd.append(f['data'][:])
                label.append(f['label'][:])
                seg.append(f['pid'][:])
            except:
                break
        train_data, train_label, train_seg = np.concatenate(
            pcd), np.concatenate(label), np.concatenate(seg)

        # data stored in list as a pickle file. range from [-1, 1]
        # path = "data/shapenetpart_training.pkl"
        # with open(path, "rb") as f:
        #     data = pickle.load(f)
        if len(category.split("_")) > 1:
            idx = int(category.split("_")[1])
            train_data = train_data[train_label == idx]
    elif cate_temp == "mnist":
        # train_data = []
        train_data = pickle.load(open("data/mnist_normal.pkl", "rb"))
        # for pnt in temp_data:
        #     train_data.append(np.concatenate([pnt, np.zeros(([pnt.shape[0], 1]))], 1))
    else:
        train_data = [np.load('data/%s_train.npy' % category)]
    if len(train_data[0].shape) == 3:
        train_data = np.concatenate(train_data)
        if arg_mode == 1:
            print("Argment data by rotating through x axis. %d Data" %
                  len(train_data))
            train_data = data_argment(train_data)
            print("Argmented. %d Data" % len(train_data))
    else:
        # data stored in pickle
        if arg_mode == 1:
            print("Argment data by rotating through x axis. %d Data" %
                  len(train_data))
            new_train_data = []
            for pcd in train_data:
                for xrot in (np.arange(-1, 1, 0.25) * math.pi):
                    M = euler2mat(0, xrot, 0)
                    new_train_data.append(np.dot(pcd, M.transpose()))
            train_data = new_train_data
            print("Argmented. %d Data" % len(train_data))

    idx = np.random.permutation(len(train_data))
    if type(train_data) is list:
        train_data = [train_data[i] for i in idx]
    else:
        train_data = train_data[idx]
    return train_data