Exemplo n.º 1
0
    def visualise_behaviour(
        env,
        args,
        policy,
        iter_idx,
        encoder=None,
        image_folder=None,
        return_pos=False,
        **kwargs,
    ):

        num_episodes = args.max_rollouts_per_task
        unwrapped_env = env.venv.unwrapped.envs[0].unwrapped

        # --- initialise things we want to keep track of ---

        episode_prev_obs = [[] for _ in range(num_episodes)]
        episode_next_obs = [[] for _ in range(num_episodes)]
        episode_actions = [[] for _ in range(num_episodes)]
        episode_rewards = [[] for _ in range(num_episodes)]

        episode_returns = []
        episode_lengths = []

        if encoder is not None:
            episode_latent_samples = [[] for _ in range(num_episodes)]
            episode_latent_means = [[] for _ in range(num_episodes)]
            episode_latent_logvars = [[] for _ in range(num_episodes)]
        else:
            curr_latent_sample = curr_latent_mean = curr_latent_logvar = None
            episode_latent_samples = episode_latent_means = episode_latent_logvars = None

        # --- roll out policy ---

        # (re)set environment
        env.reset_task()
        state, belief, task = utl.reset_env(env, args)
        start_state = state.clone()

        # if hasattr(args, 'hidden_size'):
        #     hidden_state = torch.zeros((1, args.hidden_size)).to(device)
        # else:
        #     hidden_state = None

        # keep track of what task we're in and the position of the cheetah
        pos = [[] for _ in range(args.max_rollouts_per_task)]
        start_pos = unwrapped_env.get_body_com("torso")[0].copy()

        for episode_idx in range(num_episodes):

            curr_rollout_rew = []
            pos[episode_idx].append(start_pos)

            if encoder is not None:
                if episode_idx == 0:
                    # reset to prior
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                        1)
                    curr_latent_sample = curr_latent_sample[0].to(device)
                    curr_latent_mean = curr_latent_mean[0].to(device)
                    curr_latent_logvar = curr_latent_logvar[0].to(device)
                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            for step_idx in range(1, env._max_episode_steps + 1):

                if step_idx == 1:
                    episode_prev_obs[episode_idx].append(start_state.clone())
                else:
                    episode_prev_obs[episode_idx].append(state.clone())
                # act
                latent = utl.get_latent_for_policy(
                    args,
                    latent_sample=curr_latent_sample,
                    latent_mean=curr_latent_mean,
                    latent_logvar=curr_latent_logvar)
                _, action = policy.act(state=state.view(-1),
                                       latent=latent,
                                       belief=belief,
                                       task=task,
                                       deterministic=True)

                (state, belief,
                 task), (rew, rew_normalised), done, info = utl.env_step(
                     env, action, args)
                state = state.reshape((1, -1)).float().to(device)

                # keep track of position
                pos[episode_idx].append(
                    unwrapped_env.get_body_com("torso")[0].copy())

                if encoder is not None:
                    # update task embedding
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                        action.reshape(1, -1).float().to(device),
                        state,
                        rew.reshape(1, -1).float().to(device),
                        hidden_state,
                        return_prior=False)

                    episode_latent_samples[episode_idx].append(
                        curr_latent_sample[0].clone())
                    episode_latent_means[episode_idx].append(
                        curr_latent_mean[0].clone())
                    episode_latent_logvars[episode_idx].append(
                        curr_latent_logvar[0].clone())

                episode_next_obs[episode_idx].append(state.clone())
                episode_rewards[episode_idx].append(rew.clone())
                episode_actions[episode_idx].append(
                    action.reshape(1, -1).clone())

                if info[0]['done_mdp'] and not done:
                    start_state = info[0]['start_state']
                    start_state = torch.from_numpy(start_state).reshape(
                        (1, -1)).float().to(device)
                    start_pos = unwrapped_env.get_body_com("torso")[0].copy()
                    break

            episode_returns.append(sum(curr_rollout_rew))
            episode_lengths.append(step_idx)

        # clean up
        if encoder is not None:
            episode_latent_means = [
                torch.stack(e) for e in episode_latent_means
            ]
            episode_latent_logvars = [
                torch.stack(e) for e in episode_latent_logvars
            ]

        episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
        episode_next_obs = [torch.cat(e) for e in episode_next_obs]
        episode_actions = [torch.cat(e) for e in episode_actions]
        episode_rewards = [torch.cat(e) for e in episode_rewards]

        # plot the movement of the half-cheetah
        plt.figure(figsize=(7, 4 * num_episodes))
        min_x = min([min(p) for p in pos])
        max_x = max([max(p) for p in pos])
        span = max_x - min_x
        for i in range(num_episodes):
            plt.subplot(num_episodes, 1, i + 1)
            # (not plotting the last step because this gives weird artefacts)
            plt.plot(pos[i][:-1], range(len(pos[i][:-1])), 'k')
            plt.title('task: {}'.format(task), fontsize=15)
            plt.ylabel('steps (ep {})'.format(i), fontsize=15)
            if i == num_episodes - 1:
                plt.xlabel('position', fontsize=15)
            # else:
            #     plt.xticks([])
            plt.xlim(min_x - 0.05 * span, max_x + 0.05 * span)
            plt.plot([0, 0], [200, 200], 'b--', alpha=0.2)
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_behaviour'.format(image_folder, iter_idx))
            plt.close()
        else:
            plt.show()

        if not return_pos:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns
        else:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns, pos
Exemplo n.º 2
0
    def visualise_behaviour(
        self,
        env,
        args,
        policy,
        iter_idx,
        encoder=None,
        image_folder=None,
        return_pos=False,
        **kwargs,
    ):

        num_episodes = args.max_rollouts_per_task

        # --- initialise things we want to keep track of ---

        episode_prev_obs = [[] for _ in range(num_episodes)]
        episode_next_obs = [[] for _ in range(num_episodes)]
        episode_actions = [[] for _ in range(num_episodes)]
        episode_rewards = [[] for _ in range(num_episodes)]

        episode_returns = []
        episode_lengths = []

        if encoder is not None:
            episode_latent_samples = [[] for _ in range(num_episodes)]
            episode_latent_means = [[] for _ in range(num_episodes)]
            episode_latent_logvars = [[] for _ in range(num_episodes)]
        else:
            episode_latent_samples = episode_latent_means = episode_latent_logvars = None

        # --- roll out policy ---

        # (re)set environment
        env.reset_task()
        state, belief, task = utl.reset_env(env, args)
        start_obs_raw = state.clone()
        task = task.view(-1) if task is not None else None

        # initialise actions and rewards (used as initial input to policy if we have a recurrent policy)
        if hasattr(args, 'hidden_size'):
            hidden_state = torch.zeros((1, args.hidden_size)).to(device)
        else:
            hidden_state = None

        # keep track of what task we're in and the position of the cheetah
        pos = [[] for _ in range(args.max_rollouts_per_task)]
        start_pos = state

        for episode_idx in range(num_episodes):

            curr_rollout_rew = []
            pos[episode_idx].append(start_pos[0])

            if episode_idx == 0:
                if encoder is not None:
                    # reset to prior
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                        1)
                    curr_latent_sample = curr_latent_sample[0].to(device)
                    curr_latent_mean = curr_latent_mean[0].to(device)
                    curr_latent_logvar = curr_latent_logvar[0].to(device)
                else:
                    curr_latent_sample = curr_latent_mean = curr_latent_logvar = None

            if encoder is not None:
                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            for step_idx in range(1, env._max_episode_steps + 1):

                if step_idx == 1:
                    episode_prev_obs[episode_idx].append(start_obs_raw.clone())
                else:
                    episode_prev_obs[episode_idx].append(state.clone())
                # act
                latent = utl.get_latent_for_policy(
                    args,
                    latent_sample=curr_latent_sample,
                    latent_mean=curr_latent_mean,
                    latent_logvar=curr_latent_logvar)
                _, action = policy.act(state=state.view(-1),
                                       latent=latent,
                                       belief=belief,
                                       task=task,
                                       deterministic=True)

                (state, belief,
                 task), (rew, rew_normalised), done, info = utl.env_step(
                     env, action, args)
                state = state.float().reshape((1, -1)).to(device)
                task = task.view(-1) if task is not None else None

                # keep track of position
                pos[episode_idx].append(state[0])

                if encoder is not None:
                    # update task embedding
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                        action.reshape(1, -1).float().to(device),
                        state,
                        rew.reshape(1, -1).float().to(device),
                        hidden_state,
                        return_prior=False)

                    episode_latent_samples[episode_idx].append(
                        curr_latent_sample[0].clone())
                    episode_latent_means[episode_idx].append(
                        curr_latent_mean[0].clone())
                    episode_latent_logvars[episode_idx].append(
                        curr_latent_logvar[0].clone())

                episode_next_obs[episode_idx].append(state.clone())
                episode_rewards[episode_idx].append(rew.clone())
                episode_actions[episode_idx].append(action.clone())

                if info[0]['done_mdp'] and not done:
                    start_obs_raw = info[0]['start_state']
                    start_obs_raw = torch.from_numpy(
                        start_obs_raw).float().reshape((1, -1)).to(device)
                    start_pos = start_obs_raw
                    break

            episode_returns.append(sum(curr_rollout_rew))
            episode_lengths.append(step_idx)

        # clean up
        if encoder is not None:
            episode_latent_means = [
                torch.stack(e) for e in episode_latent_means
            ]
            episode_latent_logvars = [
                torch.stack(e) for e in episode_latent_logvars
            ]

        episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
        episode_next_obs = [torch.cat(e) for e in episode_next_obs]
        episode_actions = [torch.stack(e) for e in episode_actions]
        episode_rewards = [torch.cat(e) for e in episode_rewards]

        figsize = (5.5, 4)
        figure, axis = plt.subplots(1, 1, figsize=figsize)
        xlim = (-1.3, 1.3)
        if self.goal_sampler == semi_circle_goal_sampler:
            ylim = (-0.3, 1.3)
        else:
            ylim = (-1.3, 1.3)
        color_map = mpl.colors.ListedColormap(
            sns.color_palette("husl", num_episodes))

        observations = torch.stack(
            [episode_prev_obs[i] for i in range(num_episodes)]).cpu().numpy()
        curr_task = env.get_task()

        # plot goal
        axis.scatter(*curr_task, marker='x', color='k', s=50)
        # radius where we get reward
        if hasattr(self, 'goal_radius'):
            circle1 = plt.Circle(curr_task,
                                 self.goal_radius,
                                 color='c',
                                 alpha=0.2,
                                 edgecolor='none')
            plt.gca().add_artist(circle1)

        for i in range(num_episodes):
            color = color_map(i)
            path = observations[i]

            # plot (semi-)circle
            r = 1.0
            if self.goal_sampler == semi_circle_goal_sampler:
                angle = np.linspace(0, np.pi, 100)
            else:
                angle = np.linspace(0, 2 * np.pi, 100)
            goal_range = r * np.array((np.cos(angle), np.sin(angle)))
            plt.plot(goal_range[0], goal_range[1], 'k--', alpha=0.1)

            # plot trajectory
            axis.plot(path[:, 0], path[:, 1], '-', color=color, label=i)
            axis.scatter(*path[0, :2], marker='.', color=color, s=50)

        plt.xlim(xlim)
        plt.ylim(ylim)
        plt.xticks([])
        plt.yticks([])
        plt.legend()
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_behaviour.png'.format(image_folder, iter_idx),
                        dpi=300,
                        bbox_inches='tight')
            plt.close()
        else:
            plt.show()

        plt_rew = [
            episode_rewards[i][:episode_lengths[i]]
            for i in range(len(episode_rewards))
        ]
        plt.plot(torch.cat(plt_rew).view(-1).cpu().numpy())
        plt.xlabel('env step')
        plt.ylabel('reward per step')
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_rewards.png'.format(image_folder, iter_idx),
                        dpi=300,
                        bbox_inches='tight')
            plt.close()
        else:
            plt.show()

        if not return_pos:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns
        else:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns, pos
Exemplo n.º 3
0
    def train(self):
        """ Main training loop """
        start_time = time.time()

        # reset environments
        state, belief, task = utl.reset_env(self.envs, self.args)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_state[0].copy_(state)

        # log once before training
        with torch.no_grad():
            self.log(None, None, start_time)

        for self.iter_idx in range(self.num_updates):

            # rollout policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action, action_log_prob = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        state=state,
                        belief=belief,
                        task=task,
                        deterministic=False)

                # observe reward and next obs
                [state, belief,
                 task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                     self.envs, action, self.args)

                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                # reset environments that are done
                done_indices = np.argwhere(done.flatten()).flatten()
                if len(done_indices) > 0:
                    state, belief, task = utl.reset_env(self.envs,
                                                        self.args,
                                                        indices=done_indices,
                                                        state=state)

                # add experience to policy buffer
                self.policy_storage.insert(
                    state=state,
                    belief=belief,
                    task=task,
                    actions=action,
                    action_log_probs=action_log_prob,
                    rewards_raw=rew_raw,
                    rewards_normalised=rew_normalised,
                    value_preds=value,
                    masks=masks_done,
                    bad_masks=bad_masks,
                    done=torch.from_numpy(np.array(done,
                                                   dtype=float)).unsqueeze(1),
                )

                self.frames += self.args.num_processes

            # --- UPDATE ---

            train_stats = self.update(state=state, belief=belief, task=task)

            # log
            run_stats = [action, action_log_prob, value]
            if train_stats is not None:
                with torch.no_grad():
                    self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()
Exemplo n.º 4
0
def get_test_rollout(args, env, policy, encoder=None):
    num_episodes = args.max_rollouts_per_task

    # --- initialise things we want to keep track of ---

    episode_prev_obs = [[] for _ in range(num_episodes)]
    episode_next_obs = [[] for _ in range(num_episodes)]
    episode_actions = [[] for _ in range(num_episodes)]
    episode_rewards = [[] for _ in range(num_episodes)]

    episode_returns = []
    episode_lengths = []

    if encoder is not None:
        episode_latent_samples = [[] for _ in range(num_episodes)]
        episode_latent_means = [[] for _ in range(num_episodes)]
        episode_latent_logvars = [[] for _ in range(num_episodes)]
    else:
        curr_latent_sample = curr_latent_mean = curr_latent_logvar = None
        episode_latent_means = episode_latent_logvars = None

    # --- roll out policy ---

    # (re)set environment
    env.reset_task()
    state, belief, task = utl.reset_env(env, args)
    state = state.reshape((1, -1)).to(device)
    task = task.view(-1) if task is not None else None

    for episode_idx in range(num_episodes):

        curr_rollout_rew = []

        if encoder is not None:
            if episode_idx == 0:
                # reset to prior
                curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                    1)
                curr_latent_sample = curr_latent_sample[0].to(device)
                curr_latent_mean = curr_latent_mean[0].to(device)
                curr_latent_logvar = curr_latent_logvar[0].to(device)
            episode_latent_samples[episode_idx].append(
                curr_latent_sample[0].clone())
            episode_latent_means[episode_idx].append(
                curr_latent_mean[0].clone())
            episode_latent_logvars[episode_idx].append(
                curr_latent_logvar[0].clone())

        for step_idx in range(1, env._max_episode_steps + 1):

            episode_prev_obs[episode_idx].append(state.clone())

            latent = utl.get_latent_for_policy(
                args,
                latent_sample=curr_latent_sample,
                latent_mean=curr_latent_mean,
                latent_logvar=curr_latent_logvar)
            _, action = policy.act(state=state.view(-1),
                                   latent=latent,
                                   belief=belief,
                                   task=task,
                                   deterministic=True)
            action = action.reshape((1, *action.shape))

            # observe reward and next obs
            (state, belief,
             task), (rew_raw, rew_normalised), done, infos = utl.env_step(
                 env, action, args)
            state = state.reshape((1, -1)).to(device)
            task = task.view(-1) if task is not None else None

            if encoder is not None:
                # update task embedding
                curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                    action.float().to(device),
                    state,
                    rew_raw.reshape((1, 1)).float().to(device),
                    hidden_state,
                    return_prior=False)

                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            episode_next_obs[episode_idx].append(state.clone())
            episode_rewards[episode_idx].append(rew_raw.clone())
            episode_actions[episode_idx].append(action.clone())

            if infos[0]['done_mdp']:
                break

        episode_returns.append(sum(curr_rollout_rew))
        episode_lengths.append(step_idx)

    # clean up
    if encoder is not None:
        episode_latent_means = [torch.stack(e) for e in episode_latent_means]
        episode_latent_logvars = [
            torch.stack(e) for e in episode_latent_logvars
        ]

    episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
    episode_next_obs = [torch.cat(e) for e in episode_next_obs]
    episode_actions = [torch.cat(e) for e in episode_actions]
    episode_rewards = [torch.cat(r) for r in episode_rewards]

    return episode_latent_means, episode_latent_logvars, \
           episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
           episode_returns
Exemplo n.º 5
0
def evaluate(args,
             policy,
             ret_rms,
             iter_idx,
             tasks,
             encoder=None,
             num_episodes=None):
    env_name = args.env_name
    if hasattr(args, 'test_env_name'):
        env_name = args.test_env_name
    if num_episodes is None:
        num_episodes = args.max_rollouts_per_task
    num_processes = args.num_processes

    # --- set up the things we want to log ---

    # for each process, we log the returns during the first, second, ... episode
    # (such that we have a minimum of [num_episodes]; the last column is for
    #  any overflow and will be discarded at the end, because we need to wait until
    #  all processes have at least [num_episodes] many episodes)
    returns_per_episode = torch.zeros(
        (num_processes, num_episodes + 1)).to(device)

    # --- initialise environments and latents ---

    envs = make_vec_envs(
        env_name,
        seed=args.seed * 42 + iter_idx,
        num_processes=num_processes,
        gamma=args.policy_gamma,
        device=device,
        rank_offset=num_processes +
        1,  # to use diff tmp folders than main processes
        episodes_per_task=num_episodes,
        normalise_rew=args.norm_rew_for_policy,
        ret_rms=ret_rms,
        tasks=tasks,
        add_done_info=args.max_rollouts_per_task > 1,
    )
    num_steps = envs._max_episode_steps

    # reset environments
    state, belief, task = utl.reset_env(envs, args)

    # this counts how often an agent has done the same task already
    task_count = torch.zeros(num_processes).long().to(device)

    if encoder is not None:
        # reset latent state to prior
        latent_sample, latent_mean, latent_logvar, hidden_state = encoder.prior(
            num_processes)
    else:
        latent_sample = latent_mean = latent_logvar = hidden_state = None

    for episode_idx in range(num_episodes):

        for step_idx in range(num_steps):

            with torch.no_grad():
                _, action = utl.select_action(args=args,
                                              policy=policy,
                                              state=state,
                                              belief=belief,
                                              task=task,
                                              latent_sample=latent_sample,
                                              latent_mean=latent_mean,
                                              latent_logvar=latent_logvar,
                                              deterministic=True)

            # observe reward and next obs
            [state, belief,
             task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                 envs, action, args)
            done_mdp = [info['done_mdp'] for info in infos]

            if encoder is not None:
                # update the hidden state
                latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                    encoder=encoder,
                    next_obs=state,
                    action=action,
                    reward=rew_raw,
                    done=None,
                    hidden_state=hidden_state)

            # add rewards
            returns_per_episode[range(num_processes),
                                task_count] += rew_raw.view(-1)

            for i in np.argwhere(done_mdp).flatten():
                # count task up, but cap at num_episodes + 1
                task_count[i] = min(task_count[i] + 1,
                                    num_episodes)  # zero-indexed, so no +1
            if np.sum(done) > 0:
                done_indices = np.argwhere(done.flatten()).flatten()
                state, belief, task = utl.reset_env(envs,
                                                    args,
                                                    indices=done_indices,
                                                    state=state)

    envs.close()

    return returns_per_episode[:, :num_episodes]
Exemplo n.º 6
0
    def visualise_behaviour(env,
                            args,
                            policy,
                            iter_idx,
                            encoder=None,
                            reward_decoder=None,
                            image_folder=None,
                            **kwargs):
        """
        Visualises the behaviour of the policy, together with the latent state and belief.
        The environment passed to this method should be a SubProcVec or DummyVecEnv, not the raw env!
        """

        num_episodes = args.max_rollouts_per_task
        unwrapped_env = env.venv.unwrapped.envs[0]

        # --- initialise things we want to keep track of ---

        episode_all_obs = [[] for _ in range(num_episodes)]
        episode_prev_obs = [[] for _ in range(num_episodes)]
        episode_next_obs = [[] for _ in range(num_episodes)]
        episode_actions = [[] for _ in range(num_episodes)]
        episode_rewards = [[] for _ in range(num_episodes)]

        episode_returns = []
        episode_lengths = []

        episode_goals = []
        if args.pass_belief_to_policy and (encoder is None):
            episode_beliefs = [[] for _ in range(num_episodes)]
        else:
            episode_beliefs = None

        if encoder is not None:
            # keep track of latent spaces
            episode_latent_samples = [[] for _ in range(num_episodes)]
            episode_latent_means = [[] for _ in range(num_episodes)]
            episode_latent_logvars = [[] for _ in range(num_episodes)]
        else:
            episode_latent_samples = episode_latent_means = episode_latent_logvars = None

        curr_latent_sample = curr_latent_mean = curr_latent_logvar = None

        # --- roll out policy ---

        env.reset_task()
        [state, belief, task] = utl.reset_env(env, args)
        start_obs = state.clone()

        for episode_idx in range(args.max_rollouts_per_task):

            curr_goal = env.get_task()
            curr_rollout_rew = []
            curr_rollout_goal = []

            if encoder is not None:

                if episode_idx == 0:
                    # reset to prior
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                        1)
                    curr_latent_sample = curr_latent_sample[0].to(device)
                    curr_latent_mean = curr_latent_mean[0].to(device)
                    curr_latent_logvar = curr_latent_logvar[0].to(device)

                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            episode_all_obs[episode_idx].append(start_obs.clone())
            if args.pass_belief_to_policy and (encoder is None):
                episode_beliefs[episode_idx].append(belief)

            for step_idx in range(1, env._max_episode_steps + 1):

                if step_idx == 1:
                    episode_prev_obs[episode_idx].append(start_obs.clone())
                else:
                    episode_prev_obs[episode_idx].append(state.clone())

                # act
                _, action, _ = utl.select_action(
                    args=args,
                    policy=policy,
                    state=state.view(-1),
                    belief=belief,
                    task=task,
                    deterministic=True,
                    latent_sample=curr_latent_sample.view(-1) if
                    (curr_latent_sample is not None) else None,
                    latent_mean=curr_latent_mean.view(-1) if
                    (curr_latent_mean is not None) else None,
                    latent_logvar=curr_latent_logvar.view(-1) if
                    (curr_latent_logvar is not None) else None,
                )

                # observe reward and next obs
                [state, belief,
                 task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                     env, action, args)

                if encoder is not None:
                    # update task embedding
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                        action.float().to(device),
                        state,
                        rew_raw.reshape((1, 1)).float().to(device),
                        hidden_state,
                        return_prior=False)

                    episode_latent_samples[episode_idx].append(
                        curr_latent_sample[0].clone())
                    episode_latent_means[episode_idx].append(
                        curr_latent_mean[0].clone())
                    episode_latent_logvars[episode_idx].append(
                        curr_latent_logvar[0].clone())

                episode_all_obs[episode_idx].append(state.clone())
                episode_next_obs[episode_idx].append(state.clone())
                episode_rewards[episode_idx].append(rew_raw.clone())
                episode_actions[episode_idx].append(action.clone())

                curr_rollout_rew.append(rew_raw.clone())
                curr_rollout_goal.append(env.get_task().copy())

                if args.pass_belief_to_policy and (encoder is None):
                    episode_beliefs[episode_idx].append(belief)

                if infos[0]['done_mdp'] and not done:
                    start_obs = infos[0]['start_state']
                    start_obs = torch.from_numpy(start_obs).float().reshape(
                        (1, -1)).to(device)
                    break

            episode_returns.append(sum(curr_rollout_rew))
            episode_lengths.append(step_idx)
            episode_goals.append(curr_goal)

        # clean up

        if encoder is not None:
            episode_latent_means = [
                torch.stack(e) for e in episode_latent_means
            ]
            episode_latent_logvars = [
                torch.stack(e) for e in episode_latent_logvars
            ]

        episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
        episode_next_obs = [torch.cat(e) for e in episode_next_obs]
        episode_actions = [torch.cat(e) for e in episode_actions]
        episode_rewards = [torch.cat(e) for e in episode_rewards]

        # plot behaviour & visualise belief in env

        rew_pred_means, rew_pred_vars = plot_bb(env, args, episode_all_obs,
                                                episode_goals, reward_decoder,
                                                episode_latent_means,
                                                episode_latent_logvars,
                                                image_folder, iter_idx,
                                                episode_beliefs)

        if reward_decoder:
            plot_rew_reconstruction(env, rew_pred_means, rew_pred_vars,
                                    image_folder, iter_idx)

        return episode_latent_means, episode_latent_logvars, \
               episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
               episode_returns
Exemplo n.º 7
0
    def visualise_behaviour(
        env,
        args,
        policy,
        iter_idx,
        encoder=None,
        image_folder=None,
        return_pos=False,
        **kwargs,
    ):

        num_episodes = args.max_rollouts_per_task
        unwrapped_env = env.venv.unwrapped.envs[0].unwrapped

        # --- initialise things we want to keep track of ---

        episode_prev_obs = [[] for _ in range(num_episodes)]
        episode_next_obs = [[] for _ in range(num_episodes)]
        episode_actions = [[] for _ in range(num_episodes)]
        episode_rewards = [[] for _ in range(num_episodes)]

        episode_returns = []
        episode_lengths = []

        if encoder is not None:
            episode_latent_samples = [[] for _ in range(num_episodes)]
            episode_latent_means = [[] for _ in range(num_episodes)]
            episode_latent_logvars = [[] for _ in range(num_episodes)]
        else:
            episode_latent_samples = episode_latent_means = episode_latent_logvars = None

        # --- roll out policy ---

        # (re)set environment
        env.reset_task()
        state, belief, task = utl.reset_env(env, args)
        start_obs_raw = state.clone()
        task = task.view(-1) if task is not None else None

        # initialise actions and rewards (used as initial input to policy if we have a recurrent policy)
        if hasattr(args, 'hidden_size'):
            hidden_state = torch.zeros((1, args.hidden_size)).to(device)
        else:
            hidden_state = None

        # keep track of what task we're in and the position of the cheetah
        pos = [[] for _ in range(args.max_rollouts_per_task)]
        start_pos = unwrapped_env.get_body_com("torso")[:2].copy()

        for episode_idx in range(num_episodes):

            curr_rollout_rew = []
            pos[episode_idx].append(start_pos)

            if episode_idx == 0:
                if encoder is not None:
                    # reset to prior
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                        1)
                    curr_latent_sample = curr_latent_sample[0].to(device)
                    curr_latent_mean = curr_latent_mean[0].to(device)
                    curr_latent_logvar = curr_latent_logvar[0].to(device)
                else:
                    curr_latent_sample = curr_latent_mean = curr_latent_logvar = None

            if encoder is not None:
                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            for step_idx in range(1, env._max_episode_steps + 1):

                if step_idx == 1:
                    episode_prev_obs[episode_idx].append(start_obs_raw.clone())
                else:
                    episode_prev_obs[episode_idx].append(state.clone())
                # act
                latent = utl.get_latent_for_policy(
                    args,
                    latent_sample=curr_latent_sample,
                    latent_mean=curr_latent_mean,
                    latent_logvar=curr_latent_logvar)
                _, action, _ = policy.act(state=state.view(-1),
                                          latent=latent,
                                          belief=belief,
                                          task=task,
                                          deterministic=True)

                (state, belief,
                 task), (rew, rew_normalised), done, info = utl.env_step(
                     env, action, args)
                state = state.float().reshape((1, -1)).to(device)
                task = task.view(-1) if task is not None else None

                # keep track of position
                pos[episode_idx].append(
                    unwrapped_env.get_body_com("torso")[:2].copy())

                if encoder is not None:
                    # update task embedding
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                        action.reshape(1, -1).float().to(device),
                        state,
                        rew.reshape(1, -1).float().to(device),
                        hidden_state,
                        return_prior=False)

                    episode_latent_samples[episode_idx].append(
                        curr_latent_sample[0].clone())
                    episode_latent_means[episode_idx].append(
                        curr_latent_mean[0].clone())
                    episode_latent_logvars[episode_idx].append(
                        curr_latent_logvar[0].clone())

                episode_next_obs[episode_idx].append(state.clone())
                episode_rewards[episode_idx].append(rew.clone())
                episode_actions[episode_idx].append(action.clone())

                if info[0]['done_mdp'] and not done:
                    start_obs_raw = info[0]['start_state']
                    start_obs_raw = torch.from_numpy(
                        start_obs_raw).float().reshape((1, -1)).to(device)
                    start_pos = unwrapped_env.get_body_com("torso")[:2].copy()
                    break

            episode_returns.append(sum(curr_rollout_rew))
            episode_lengths.append(step_idx)

        # clean up
        if encoder is not None:
            episode_latent_means = [
                torch.stack(e) for e in episode_latent_means
            ]
            episode_latent_logvars = [
                torch.stack(e) for e in episode_latent_logvars
            ]

        episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
        episode_next_obs = [torch.cat(e) for e in episode_next_obs]
        episode_actions = [torch.stack(e) for e in episode_actions]
        episode_rewards = [torch.cat(e) for e in episode_rewards]

        # plot the movement of the ant
        # print(pos)
        plt.figure(figsize=(5, 4 * num_episodes))
        min_dim = -3.5
        max_dim = 3.5
        span = max_dim - min_dim

        for i in range(num_episodes):
            plt.subplot(num_episodes, 1, i + 1)

            x = list(map(lambda p: p[0], pos[i]))
            y = list(map(lambda p: p[1], pos[i]))
            plt.plot(x[0], y[0], 'bo')

            plt.scatter(x, y, 1, 'g')

            curr_task = env.get_task()
            plt.title('task: {}'.format(curr_task), fontsize=15)
            if 'Goal' in args.env_name:
                plt.plot(curr_task[0], curr_task[1], 'rx')

            plt.ylabel('y-position (ep {})'.format(i), fontsize=15)

            if i == num_episodes - 1:
                plt.xlabel('x-position', fontsize=15)
                plt.ylabel('y-position (ep {})'.format(i), fontsize=15)
            plt.xlim(min_dim - 0.05 * span, max_dim + 0.05 * span)
            plt.ylim(min_dim - 0.05 * span, max_dim + 0.05 * span)

        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_behaviour'.format(image_folder, iter_idx))
            plt.close()
        else:
            plt.show()

        if not return_pos:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns
        else:
            return episode_latent_means, episode_latent_logvars, \
                   episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
                   episode_returns, pos
Exemplo n.º 8
0
    def train(self):
        """ Main Meta-Training loop """
        start_time = time.time()

        # reset environments
        prev_state, belief, task = utl.reset_env(self.envs, self.args)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_state[0].copy_(prev_state)

        # log once before training
        with torch.no_grad():
            self.log(None, None, start_time)

        for self.iter_idx in range(self.num_updates):

            # First, re-compute the hidden states given the current rollouts (since the VAE might've changed)
            with torch.no_grad():
                latent_sample, latent_mean, latent_logvar, hidden_state = self.encode_running_trajectory(
                )

            # add this initial hidden state to the policy storage
            assert len(self.policy_storage.latent_mean
                       ) == 0  # make sure we emptied buffers
            self.policy_storage.hidden_states[0].copy_(hidden_state)
            self.policy_storage.latent_samples.append(latent_sample.clone())
            self.policy_storage.latent_mean.append(latent_mean.clone())
            self.policy_storage.latent_logvar.append(latent_logvar.clone())

            # rollout policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        state=prev_state,
                        belief=belief,
                        task=task,
                        deterministic=False,
                        latent_sample=latent_sample,
                        latent_mean=latent_mean,
                        latent_logvar=latent_logvar,
                    )

                # take step in the environment
                [next_state, belief,
                 task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                     self.envs, action, self.args)

                done = torch.from_numpy(np.array(
                    done, dtype=int)).to(device).float().view((-1, 1))
                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                with torch.no_grad():
                    # compute next embedding (for next loop and/or value prediction bootstrap)
                    latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                        encoder=self.vae.encoder,
                        next_obs=next_state,
                        action=action,
                        reward=rew_raw,
                        done=done,
                        hidden_state=hidden_state)

                # before resetting, update the embedding and add to vae buffer
                # (last state might include useful task info)
                if not (self.args.disable_decoder
                        and self.args.disable_kl_term):
                    self.vae.rollout_storage.insert(
                        prev_state.clone(),
                        action.detach().clone(), next_state.clone(),
                        rew_raw.clone(), done.clone(),
                        task.clone() if task is not None else None)

                # add the obs before reset to the policy storage
                self.policy_storage.next_state[step] = next_state.clone()

                # reset environments that are done
                done_indices = np.argwhere(done.cpu().flatten()).flatten()
                if len(done_indices) > 0:
                    next_state, belief, task = utl.reset_env(
                        self.envs,
                        self.args,
                        indices=done_indices,
                        state=next_state)

                # TODO: deal with resampling for posterior sampling algorithm
                #     latent_sample = latent_sample
                #     latent_sample[i] = latent_sample[i]

                # add experience to policy buffer
                self.policy_storage.insert(
                    state=next_state,
                    belief=belief,
                    task=task,
                    actions=action,
                    rewards_raw=rew_raw,
                    rewards_normalised=rew_normalised,
                    value_preds=value,
                    masks=masks_done,
                    bad_masks=bad_masks,
                    done=done,
                    hidden_states=hidden_state.squeeze(0),
                    latent_sample=latent_sample,
                    latent_mean=latent_mean,
                    latent_logvar=latent_logvar,
                )

                prev_state = next_state

                self.frames += self.args.num_processes

            # --- UPDATE ---

            if self.args.precollect_len <= self.frames:

                # check if we are pre-training the VAE
                if self.args.pretrain_len > self.iter_idx:
                    for p in range(self.args.num_vae_updates_per_pretrain):
                        self.vae.compute_vae_loss(
                            update=True,
                            pretrain_index=self.iter_idx *
                            self.args.num_vae_updates_per_pretrain + p)
                # otherwise do the normal update (policy + vae)
                else:

                    train_stats = self.update(state=prev_state,
                                              belief=belief,
                                              task=task,
                                              latent_sample=latent_sample,
                                              latent_mean=latent_mean,
                                              latent_logvar=latent_logvar)

                    # log
                    run_stats = [
                        action, self.policy_storage.action_log_probs, value
                    ]
                    with torch.no_grad():
                        self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()

        self.envs.close()