Exemplo n.º 1
0
def debug_plots(basename, rfile, state_prob, corr_w, mass):
    """
    Make some debug plots and store them into a root file so that they can be
    viewed later
    """
    rfile.cd()
    prob_h = hist1d(state_prob, min=0, max=1, name=basename + '_state_prob')
    corr_h = hist1d(corr_w, log=True, name=basename + '_corr_w')
    w_h = hist1d(state_prob * corr_w, log=True, name=basename + '_final_weight')

    # Keep the 2d histograms consistent between different bins by setting ranges
    corr_v_prob = hist2d(state_prob, corr_w, minx=0, maxx=1,
                         miny=1, maxy=1e5, logy=True, y_axis='corr_weight',
                         name=basename + '_corr_w_v_state_prob')
    w_v_prob = hist2d(state_prob, corr_w * state_prob, minx=0, maxx=1,
                      miny=0.01, maxy=1e4, logy=True, y_axis='final_weight',
                      name=basename + '_final_weight_v_state_prob')

    mass_h = hist1d(mass, min=3.2, max=3.75, weights=state_prob,
                    name=basename + '_mass_w_state_prob')

    mass_h_w = hist1d(mass, min=3.2, max=3.75, weights=state_prob * corr_w,
                      name=basename + '_mass_w_final_weight')

    rej_sp_h = hist1d(state_prob[corr_w == 0], min=0, max=1,
                      name=basename + '_state_prob_rej_ev')

    for h in [prob_h, corr_h, w_h, corr_v_prob, w_v_prob, mass_h, mass_h_w,
              rej_sp_h]:
        h.Write()
Exemplo n.º 2
0
def make_plot_good_fit(data, var_x, var_y, tf_x, tf_y):
    """Make a plot showing whether the fit was successful or not for each point
    of the scan"""
    # Remove the minimum since that is in any case valid
    data = apply_selections(data, lambda d: d.llh != d.llh.min())

    trans_f_x = globals()[tf_x]
    trans_f_y = globals()[tf_y]

    x_vals = trans_f_x(data.loc[:, var_x])
    y_vals = trans_f_y(data.loc[:, var_y])

    x_binning = get_variable_binning(x_vals)
    y_binning = get_variable_binning(y_vals)

    good_fit = data.goodFit > 0

    hist = hist2d(x_vals[good_fit],
                  y_vals[good_fit],
                  x_hist_sett=(len(x_binning) - 1, x_binning),
                  y_hist_sett=(len(y_binning) - 1, y_binning))

    can = mkplot(to_bw_hist(hist),
                 drawOpt='colz',
                 xRange=[x_binning[0], x_binning[-1]],
                 yRange=[y_binning[0], y_binning[-1]],
                 xLabel=get_var_name(var_x, tf_x),
                 yLabel=get_var_name(var_y, tf_y))

    hist = can.pltables[1]
    hist.GetZaxis().SetRangeUser(0, 10)

    remove_color_bar(can)

    return can
Exemplo n.º 3
0
def ppd_2d(data, var1, vfunc1, var2, vfunc2, name_fmt, weights=None):
    """
    Get the 2d ppd histogram for a given variable
    """
    xran = XRANGES.get(var1)
    yran = XRANGES.get(var2)

    bounds = {
        'minx': xran[0],
        'maxx': xran[1],
        'nbinsx': NBINS_2D,
        'miny': yran[0],
        'maxy': yran[1],
        'nbinsy': NBINS_2D,
        'name': name_fmt.format('_'.join(['2d', var1, var2]))
    }

    # TODO: Remove after unblinding
    vals1, low1, high1 = get_var_shifted(data, vfunc1, name_fmt.format(var1), {
        'min': bounds['minx'],
        'max': bounds['maxx']
    })
    bounds['minx'] = low1
    bounds['maxx'] = high1
    vals2, low2, high2 = get_var_shifted(data, vfunc2, name_fmt.format(var2), {
        'min': bounds['miny'],
        'max': bounds['maxy']
    })
    bounds['miny'] = low2
    bounds['maxy'] = high2

    return hist2d(vals1, vals2, weights=weights, **bounds)
Exemplo n.º 4
0
def make_2D_hist(dfr, varx, vary, selection=None, weight=None, **kwargs):
    """
    Make the 2D histogram and return it
    """
    logging.debug('Making histograms for {}:{}'.format(varx, vary))
    dfr, weights = get_df_and_weights(dfr, selection, weight)
    return hist2d(_get_var(dfr, varx),
                  _get_var(dfr, vary),
                  weights=weights,
                  **kwargs)
Exemplo n.º 5
0
def get_2d_hist(data, varx, vary, nbinsx=100, nbinsy=100):
    """Get the 2d distribution of vary vs varx"""
    # Get rid of very large outliers
    xmin, xmax = quantile(data.loc[:, varx].values, [0.0001, 0.9999])
    ymin, ymax = quantile(data.loc[:, vary].values, [0.0001, 0.9999])
    return hist2d(data.loc[:, varx],
                  data.loc[:, vary],
                  minx=xmin,
                  maxx=xmax,
                  miny=ymin,
                  maxy=ymax,
                  nbinsx=nbinsx,
                  nbinsy=nbinsy)
Exemplo n.º 6
0
def make_costh_phi_plot(data, frame):
    """Make costh-phi histogram"""
    hist = hist2d(_get_var(data, 'costh_{}_fold'.format(frame), np.abs),
                  _get_var(data, 'phi_{}_fold'.format(frame)),
                  nbinsx=24, minx=0, maxx=1,
                  nbinsy=32, miny=0, maxy=90)

    cth_lab = '|cos#vartheta^{{{}}}|'.format(frame)
    phi_lab = '#varphi^{{{}}}_{{fold}}'.format(frame)

    can = mkplot(hist, drawOpt='colz', xRange=[0, 1], xLabel=cth_lab,
                 yRange=[0, 90], yLabel=phi_lab)
    can.pltables[0].SetNdivisions(505, 'X')
    can.Update()
    return can
def make_overlay_plot(pt_map, pt_data, **kwargs):
    """
    Plot the coverage of the pt_data onto the
    """
    amap_x, amap_y = get_binning(pt_map, 0), get_binning(pt_map, 1)
    if np.min(amap_x) == 0:
        costh = pt_data.costh_HX_fold.abs()
    else:
        costh = pt_data.costh_HX_fold

    data_dist = hist2d(costh,
                       pt_data.phi_HX_fold,
                       x_hist_sett=(len(amap_x) - 1, amap_x),
                       y_hist_sett=(len(amap_y) - 1, amap_y))

    coverage = get_array(data_dist) > 0
    cov_graph = get_mask_graph(amap_x, amap_y, coverage)

    can = mkplot(pt_map, **kwargs)
    mkplot(cov_graph,
           can=can,
           drawOpt='sameE5',
           attr=[{
               'color': r.kRed,
               'fillalpha': (r.kRed, 0),
               'marker': 1
           }])
    mkplot([
        r.TLine(v, np.min(amap_y), v, np.max(amap_y))
        for v in [-0.625, -0.45, 0.45, 0.625]
    ],
           attr=[{
               'color': 12,
               'line': 7,
               'width': 2
           }],
           can=can,
           drawOpt='same')

    return can
Exemplo n.º 8
0
 def fill_2d(data, frame, weights):
     """2D histograms"""
     return hist2d(_get_var(data, 'costh_' + frame),
                   _get_var(data, 'phi_' + frame),
                   hist_sett=(n_costh, -1, 1, n_phi, -180, 180),
                   weights=weights)