def test_valid_mask():
  from utils.utils import pltImshow
  batch_size = 1
  mat_homographies = [sample_homography(3) for i in range(batch_size)]
  mat_H = np.stack(mat_homographies, axis=0)


  corner_img = np.array([(-1, -1), (-1, 1), (1, -1), (1, 1)])
  # printCorners(corner_img, mat_H)
  # points = warp_points_np(corner_img, mat_homographies)

  mat_H = torch.tensor(mat_H, dtype=torch.float32)
  mat_H_inv = torch.stack([torch.inverse(mat_H[i, :, :]) for i in range(batch_size)])
  from utils.utils import compute_valid_mask, labels2Dto3D
  device = 'cpu'
  shape = torch.tensor([240, 320])
  for i in range(1):
    r = 3
    mask_valid = compute_valid_mask(shape, inv_homography=mat_H_inv, device=device, erosion_radius=r)
    pltImshow(mask_valid[0,:,:])
    cell_size = 8
    mask_valid = labels2Dto3D(mask_valid.view(batch_size, 1, mask_valid.shape[1], mask_valid.shape[2]), cell_size=cell_size)
    mask_valid = torch.prod(mask_valid[:,:cell_size*cell_size,:,:], dim=1)
    pltImshow(mask_valid[0,:,:].cpu().numpy())

  mask = {}
  mask.update({'homographies': mat_H, 'masks': mask_valid})
  np.savez_compressed('h2.npz', **mask)
  print("finish testing valid mask")
Exemplo n.º 2
0
def sample_homo(image):
    import tensorflow as tf
    from utils.homographies import sample_homography
    H = sample_homography(tf.shape(image)[:2])
    with tf.Session():
        H_ = H.eval()
    H_ = np.concatenate((H_, np.array([1])[:, np.newaxis]), axis=1)
    # warped_im = tf.contrib.image.transform(image, H, interpolation="BILINEAR")
    mat = np.reshape(H_, (3, 3))
    # for i in range(batch):
    #     np.stack()
    return mat
def test_sample_homography():
  batch_size = 30
  filename = '../configs/superpoint_coco_train.yaml'
  import yaml
  with open(filename, 'r') as f:
    config = yaml.load(f)
  test_tf = False
  test_corner_def = True

  if test_tf == True:
    from utils.homographies import sample_homography as sample_homography
    boundary = 1
    # from utils.homographies import sample_homography_np as sample_homography
    # mat_homographies = matrix[np.newaxis, :,:]
    # mat_homographies = [sample_homography(tf.constant([boundary,boundary]),
    mat_homographies = [sample_homography(np.array([boundary,boundary]),
                                          **config['data']['warped_pair']['params']) for i in range(batch_size)]
    mat_homographies = np.stack(mat_homographies, axis=0)
    corner_img = np.array([[0., 0.], [0., boundary], [boundary, boundary], [boundary, 0.]])
    printCorners(corner_img, mat_homographies)

  if test_corner_def:
    corner_img = np.array([(-1, -1), (-1, 1), (1, 1), (1, -1)])
    from utils.homographies import sample_homography_np as sample_homography
    boundary = 2
    mat_homographies = [sample_homography(np.array([boundary,boundary]), shift=-1,
                                          **config['data']['warped_pair']['params']) for i in range(batch_size)]
    mat_homographies = np.stack(mat_homographies, axis=0)
    printCorners(corner_img, mat_homographies)


  else:
    from utils.utils import sample_homography
    mat_homographies = [sample_homography(1) for i in range(batch_size)]

  # sess = tf.Session()
  # with sess.as_default():
  #   m = mat_homographies[0].eval()

  print("end")
Exemplo n.º 4
0
def sample_homographies(batch_size=1, scale=10, device='cpu'):
    ## sample homography matrix
    # mat_H = [sample_homography(inv_scale=scale) for i in range(batch_size)]
    mat_H = [sample_homography(inv_scale=scale) for i in range(batch_size)]
    ##### debug
    # from utils.utils import sample_homo
    # mat_H = [sample_homo(image=np.zeros((1,1))) for i in range(batch_size)]

    # mat_H = [np.identity(3) for i in range(batch_size)]
    mat_H = np.stack(mat_H, axis=0)
    mat_H = torch.tensor(mat_H, dtype=torch.float32)
    mat_H = mat_H.to(device)

    mat_H_inv = torch.stack([torch.inverse(mat_H[i, :, :]) for i in range(batch_size)])
    mat_H_inv = torch.tensor(mat_H_inv, dtype=torch.float32)
    mat_H_inv = mat_H_inv.to(device)
    return mat_H, mat_H_inv