def main(argv): """Основная функция выполнения обновления""" print(argv) log.init() log.info('Начало проверки обновлений.') # Инициализация настроек обновления из файла settings.json settings_dict = worker.init_settings() # Создание коннектора для работы с сервисом проверки обновлений 1С connector = updateapi.ApiConnector(settings_dict["itsUsername"], settings_dict["itsPassword"], settings_dict["proxySettings"]) # Поиск и скачивание новых версий конфигураций 1С worker.update_configurations(connector, settings_dict) # Поиск и скачивание новой версии платформы 1С worker.update_platform(connector, settings_dict) # Поиск и скачивание новых версий конфигураций 1С worker.update_configurations(connector, settings_dict) log.info('Завершение проверки обновлений.') log.close()
dest='global_shift', default=True) parser.add_argument('--invert', help="invert color range", dest='invert', action='store_true', default=False) args = parser.parse_args() # local mode if args.rom == None: print("Need --rom parameter") sys.exit(-1) log.init(args.debug) logger = utils.log.get('Palette') if args.seed == 0: random.seed(random.randint(0, 9999999)) else: random.seed(args.seed) settings = { # global same shift for everything flag "global_shift": True, #set to True if all suits should get a separate hue-shift degree "individual_suit_shift": False, #set to True if all tileset palettes should get a separate hue-shift degree
def main(run_directory: str, dev_tsv_file: str = None, tsv_file: str = None, reload=False, use_cuda=True): init(run_directory + "log/out.txt") from tensorboardX import SummaryWriter writer = SummaryWriter(log_dir=os.path.join(os.getcwd(), "tensorboard")) if reload: searcher = CrossEntropyHyperparamSearch.read_runs(run_directory + "searchdata.pkl.gz", writer=writer) else: search_params = { "batch_size": 8, "n_samples": 21, "elite_samples": 6, "run_directory": run_directory, "dev": dev_tsv_file, "train": tsv_file, "use_cuda": use_cuda } search_params["const_params"] = { "use_copy": True, "bidirectional": True } search_params["dim_params"] = [{ "name": "num_unks", "transform": HyperparamTransform(min_val=2, max_val=6.5, make_int=True, log_space=True, log_base=2) }, { "name": "lr", "transform": HyperparamTransform(min_val=-3.15, max_val=-2.3, log_space=True) }, { "name": "hidden_size", "transform": HyperparamTransform(min_val=150, max_val=650, make_int=True) }, { "name": "n_layers", "transform": HyperparamTransform(min_val=1, max_val=3, make_int=True) }, { "name": "dropout", "transform": HyperparamTransform(min_val=0.1, max_val=0.8) }, { "name": "bidirectional", "transform": HyperparamTransform(make_bool=True) }, { "name": "attention_size", "transform": HyperparamTransform(min_val=100, max_val=650, make_int=True) }, { "name": "copy_attn_size", "transform": HyperparamTransform(min_val=100, max_val=650, make_int=True) }, { "name": "copy_extra_layer", "transform": HyperparamTransform(make_bool=True) }, { "name": "attn_extra_layer", "transform": HyperparamTransform(make_bool=True) }, { "name": "copy_extra_layer_size", "transform": HyperparamTransform(min_val=50, max_val=650, make_int=True) }, { "name": "attn_extra_layer_size", "transform": HyperparamTransform(min_val=50, max_val=650, make_int=True) }] searcher = CrossEntropyHyperparamSearch(run_params=search_params, writer=writer) searcher.search_params(n_sets=50)
def main(train: bool, model_path: str, dev_tsv_file: str = None, tsv_file: str = None, vocab_list: str = None, vocab_size=30000, batch_size=64, epochs=1, use_cuda=True, lr=0.002, hidden_size=1024, n_layers=1, bidirectional=True, dropout=0.5, num_unks=10, use_copy=True, attention_size=512, copy_attn_size=512, copy_extra_layer=True, attn_extra_layer=True, copy_extra_layer_size=512, attn_extra_layer_size=512, continue_training=False, do_sentiment=False, use_coverage=False, coverage_weight=1.0): init("log/out.txt") from tensorboardX import SummaryWriter writer = SummaryWriter(log_dir=os.path.join(os.getcwd(), "tensorboard")) dataset = None devset = None if train: model_param = { 'lr': lr, 'hidden_size': hidden_size, 'n_layers': n_layers, 'bidirectional': bidirectional, 'dropout': dropout, 'num_unks': num_unks, 'use_copy': use_copy, 'attention_size': attention_size, 'copy_attn_size': copy_attn_size, 'copy_extra_layer': copy_extra_layer, 'attn_extra_layer': attn_extra_layer, 'copy_extra_layer_size': copy_extra_layer_size, 'attn_extra_layer_size': attn_extra_layer_size, 'use_coverage': use_coverage, "do_sentiment": do_sentiment, "coverage_weight": coverage_weight } misc_tokens = ["<SOS>", "<EOS>"] model_param['misc_tokens'] = misc_tokens model_param['vocab'] = IDKRephraseModel.get_vocab_from_list_and_files( vocab_list, vocab_size, [tsv_file, dev_tsv_file], misc_tokens) model = IDKRephraseModel(model_param, writer=writer) dataset = IDKRephraseDataset.from_TSV(tsv_file, model.glove, "<SOS>", "<EOS>", model.vocab, do_sentiment) else: model = IDKRephraseModel.from_file(model_path, writer=writer) model.set_cuda(use_cuda) if dev_tsv_file is not None: devset = IDKRephraseDataset.from_TSV(dev_tsv_file, model.glove, "<SOS>", "<EOS>", model.vocab, do_sentiment) if train or continue_training: if dataset is None: dataset = IDKRephraseDataset.from_TSV(tsv_file, model.glove, "<SOS>", "<EOS>", model.vocab) model.train_dataset(dataset, devset, batch_size, 0, epochs, model_path) while True: question = input(": ") if question == "quit": break question = "<SOS> " + question + " <EOS>" sentiment = input("Positive (y/n):") sentiment_flag = 0 if sentiment.lower() == "y": sentiment_flag = 1 condensed = input("Condensed (y/n):") condensed_flag = 0 if condensed.lower() == "y": condensed_flag = 1 info(" ".join( model.predict(torch.LongTensor( model.glove.words_to_indices(question.split())), question.split(), make_attn_graphics=False, sentiment_tensor=torch.Tensor( [sentiment_flag, condensed_flag])))) if dev_tsv_file is not None: #model.get_worst_bleu(devset) model.evaluate_bleu(devset, print_predictions=True)
# noinspection SpellCheckingInspection __author__ = 'wookjae.jo' import os from datetime import date from datetime import datetime from database.backtest.report import XlsxExporter from database.backtest.strategies.bollinger import BackTest as BlgBackTest from utils import log log.init() def run(earning_line_max, stop_line, comment): begin = date(2018, 1, 1) end = date(2021, 7, 27) backtest = BlgBackTest(begin=begin, end=end, initial_deposit=1_0000_0000, once_buy_amount=200_0000, earning_line_min=5, earning_line=10, earning_line_max=earning_line_max, stop_line=stop_line, trailing_stop_rate=3, blacklist=['007700', '086520']) backtest.comment = comment backtest.start()
import datetime import logging import os import sys import time from utils import log log.init(logging.DEBUG) from creon import stocks, metrics basedir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(basedir, 'stocktock')) from trading import Simulator_2 from utils.slack import Message def main(): available_codes = stocks.get_availables() # 정배열만 필터링 available_codes = [ code for code in available_codes if metrics.get_calculator(code).is_straight() ] print(f'정배열 개수: {len(available_codes)}') # 시총 제한 # details: Dict[str, stocks.StockDetail2] = {detail.code: detail for detail in stocks.get_details(available_codes)}
import os import sys basedir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(basedir, 'stocktock')) import logging from utils import log log.init(logging.INFO) from dateutil.parser import parse as parse_datetime import flask_cors import jsons from flask import Flask, request, send_file from werkzeug.serving import WSGIRequestHandler from creon import stocks from creon import charts from creon.exceptions import CreonError from creon.connection import connector as creon_connector from datetime import date, timedelta from dataclasses import dataclass from simstock import BreakAbove5MaEventSimulator # set protocol HTTP/1.1 WSGIRequestHandler.protocol_version = "HTTP/1.1" app = Flask(__name__) flask_cors.CORS(app)
help="Target script name", action="store", default=None) parser.add_argument("-c", "--target-count", help="Target instance count", action="store", type=int, default=1) parser.add_argument("--shell", help="Run command as shell mode", action="store_true", default=False) parser.add_argument("--socket", help="Unix domain socket path", action="store", default=None) args = parser.parse_args() log.init(args.name) log.i(__name__, "Start QB Incubator") if args.script is None and args.target is None: log.e(__name__, "--script and --target are not set.") exit(1) if args.script is not None: script_main(args.shell, args.script, args.socket) else: target_main(args.shell, args.target, args.target_count, args.socket)