Exemplo n.º 1
0
    def calc_att_cmd(self, Tc_vec, Tc, yaw_des):
        s_yaw = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])

        R = np.empty([3, 3])
        R[:, 2] = Tc_vec / Tc
        R[:, 1] = mt.skew(R[:, 2]) @ s_yaw
        R[:, 1] /= mt.norm2(R[:, 1])
        R[:, 0] = mt.skew(R[:, 1]) @ R[:, 2]
        return quat.from_R(R)
    def calc_att_cmd(self, thrust_vec, yaw_des):
        thrust_mag = mt.norm2(thrust_vec)
        s_yaw = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])

        R = np.empty([3,3])
        R[:,2] = thrust_vec / thrust_mag
        R[:,1] = mt.skew(R[:,2]) @ s_yaw
        R[:,1] /= mt.norm2(R[:,1])
        R[:,0] = mt.skew(R[:,1]) @ R[:,2] 

        return quat.from_R(R)
Exemplo n.º 3
0
 def rotp(self, vec3):
     """Passive rotation of 3d vector (same as q.R @ vec3)
     e.g. vec_b = q_i2b.rotp(vec_i)
     """
     qbar_skew = mt.skew(self.qbar)
     temp = 2 * qbar_skew @ vec3
     return vec3 - self.q0 * temp + qbar_skew @ temp
Exemplo n.º 4
0
 def rota(self, vec3):
     """Active rotation of 3d vector (same as q.R.T @ vec3)
     e.g. vec_i = q_i2b.rota(vec_b)
     """
     qbar_skew = mt.skew(self.qbar)
     temp = 2 * qbar_skew @ vec3
     return vec3 + self.q0 * temp + qbar_skew @ temp
Exemplo n.º 5
0
def naive_triangulate_points(x_a, x_b, translation, rotation):
    """
    Assumes points satisfy the epipolar constraint. Uses the eigenvector
    corresponding the to smallest eigenvalue of A.T @ A as depth solution
    """
    n = x_a.shape[1]

    R = rotation.R
    # R = rotation

    # create A matrix
    x_a_rot = R @ x_a
    A = np.zeros((3 * n, n + 1))
    for i, x in enumerate(x_b.T):
        x_b_cross = mt.skew(x)
        A[3 * i:3 * (i + 1), i] = x_b_cross @ x_a_rot[:, i]
        A[3 * i:3 * (i + 1), -1] = x_b_cross @ translation

    # get Lambda by taking the eigenvector corresponding the smallest
    # singular value of A
    u, s, vh = np.linalg.svd(A)

    # normalize so that gamma = 1
    Lambda = vh[-1, :] / vh[-1, -1]

    # multiply to get 3d points in previous frame
    p_a = x_a * Lambda[:-1]

    p_a = p_a[:, np.bitwise_and(Lambda[:-1] < 20.0, Lambda[:-1] > 1.0)]

    # get points in new body frame
    p_b = R @ p_a + translation.reshape(3, 1)

    return p_b
    def calc_ang_vel_des(self, att_cmd, pos, vel, yaw, traj):
        pos_des = traj.pos
        vel_des = traj.vel
        accel_des = traj.accel
        jerk_des = traj.jerk
        yaw_des = traj.yaw
        yaw_rate_des = traj.yaw_rate

        pos_err = pos - pos_des
        vel_err = vel - vel_des

        R = att_cmd.R
        r1 = R[:, 0]
        r2 = R[:, 1]
        r3 = R[:, 2]

        s_yaw = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])
        s_yaw_dot = np.array([
            -yaw_rate_des * np.sin(yaw_des), yaw_rate_des * np.cos(yaw_des), 0
        ])

        a = accel_des - self.g * np.array(
            [0., 0., 1.]) - self.kp * pos_err - self.kd * vel_err
        accel_err = -self.kp * pos_err - self.kd * vel_err
        a_dot = jerk_des - self.kp * vel_err - self.kd * accel_err
        r3_dot = -a_dot / np.linalg.norm(a) + a * (
            a_dot @ a) / np.linalg.norm(a)**3

        num = mt.skew(r3) @ s_yaw
        num_dot = mt.skew(r3_dot) @ s_yaw + mt.skew(r3) @ s_yaw_dot
        r2_dot = num_dot / np.linalg.norm(num) - num * (
            num_dot @ num) / np.linalg.norm(num)**3

        r1_dot = mt.skew(r2_dot) @ r3 + mt.skew(r2) @ r3_dot

        R_dot = np.zeros((3, 3))
        R_dot[:, 0] = r1_dot
        R_dot[:, 1] = r2_dot
        R_dot[:, 2] = r3_dot

        ang_vel_des = mt.vee(R.T @ R_dot)
        return ang_vel_des
Exemplo n.º 7
0
def from_two_unit_vectors(v1, v2):
    """Create Quaternion from 2 unit vectors"""
    assert v1.size == 3
    assert v2.size == 3
    u = v1.copy()
    v = v2.copy()

    d = u @ v
    if d < 1.0:
        invs = (2 * (1 + d))**-0.5
        qbar = mt.skew(u) @ v * invs
        q0 = 0.5 / invs
        q_arr = np.array([q0, *qbar])
    return Quaternion(q_arr)
Exemplo n.º 8
0
def analytical_update(x_a, x_b, translation, rotation):
    """
    Computes the analytic solution to the point match correction problem
    (see Section 12.5 of Multiple View Geometry book)
    """
    n = x_a.shape[1]
    x_a = x_a[:2, :].reshape(1, n, 2)
    x_b = x_b[:2, :].reshape(1, n, 2)

    x_a_cor, x_b_cor = cv.correctMatches(
        mt.skew(translation) @ rotation.R, x_a, x_b)

    x_a_cor = x_a_cor[0, :, :].T
    x_b_cor = x_b_cor[0, :, :].T
    x_a_cor = np.block([[x_a_cor], [np.ones(n)]])
    x_b_cor = np.block([[x_b_cor], [np.ones(n)]])

    return x_a_cor, x_b_cor
Exemplo n.º 9
0
 def R(self):
     """Get passive rotation matrix
     e.g. R_i2b = q_i2b.R
     """
     qbar_skew = mt.skew(self.qbar)
     return np.eye(3) + 2 * (-self.q0 * qbar_skew + qbar_skew @ qbar_skew)