Exemplo n.º 1
0
    def _avoid_close_objects(self, x, y, theta):
        distances = self._distances_to_robots()

        new_yield_timestamps = {}

        self._yield_timestamps = new_yield_timestamps

        bearings = set()

        for robot_name, distance in distances:
            if distance > SimpleAlgorithm.CIRCLES_RADIUS * 1:
                break

            if self._states[self._robot_name]['fear_factor'] < self._states[
                    robot_name]['fear_factor']:

                state = self._states[robot_name]
                rx = state['x']
                ry = state['y']

                bearing_to_robot = MeasurementUtils.angle(x, y, rx, ry)
                #bearings.add(bearing_to_robot)
            else:
                self._send_stop_command()
                return True

        for wx, wy in self._maze_util.get_close_walls_points(x, y, 0.25):
            bearing_to_wall = MeasurementUtils.angle(x, y, wx, wy)
            bearings.add(bearing_to_wall)

        if len(bearings) == 0:
            return False
        else:
            bearings = list(bearings)
            bearings.sort()
            bearings_len = len(bearings)
            bearings.append(bearings[0] + 2.0 * math.pi)

            max_gap = 0
            best_bearing = None
            for i in range(bearings_len):
                gap = abs(bearings[i + 1] - bearings[i])
                if gap > max_gap:
                    max_gap = gap
                    best_bearing = MeasurementUtils.normalize_angle(
                        bearings[i] + 0.5 * (bearings[i + 1] - bearings[i]))

            v, omega = SimpleAlgorithm._navigate_fun(
                SimpleAlgorithm.CRUISE_SPEED * 0.5, theta, best_bearing, True)

            preds = PredictionUtils.predict_positions(x, y, v, best_bearing,
                                                      0.0)
            self._predictions[self._robot_name] = preds

        Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

        self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

        return True
Exemplo n.º 2
0
    def _avoid_close_objects(self, x, y, theta):
        distances = self._distances_to_robots()

        new_yield_timestamps = {}

        self._yield_timestamps = new_yield_timestamps

        bearings = set()

        for robot_name, distance in distances:
            if distance > SimpleAlgorithm.CIRCLES_RADIUS * 1:
                break

            if self._states[self._robot_name]['fear_factor'] < self._states[robot_name]['fear_factor']:

                state = self._states[robot_name]
                rx = state['x']
                ry = state['y']

                bearing_to_robot = MeasurementUtils.angle(x, y, rx, ry)
                #bearings.add(bearing_to_robot)
            else:
                self._send_stop_command()
                return True

        for wx, wy in self._maze_util.get_close_walls_points(x, y, 0.25):
            bearing_to_wall = MeasurementUtils.angle(x, y, wx, wy)
            bearings.add(bearing_to_wall)


        if len(bearings) == 0:
            return False
        else:
            bearings = list(bearings)
            bearings.sort()
            bearings_len = len(bearings)
            bearings.append(bearings[0] + 2.0 * math.pi)

            max_gap = 0
            best_bearing = None
            for i in range(bearings_len):
                gap = abs(bearings[i+1] - bearings[i])
                if gap > max_gap:
                    max_gap = gap
                    best_bearing = MeasurementUtils.normalize_angle(bearings[i] + 0.5 * (bearings[i+1] - bearings[i]))

            v, omega = SimpleAlgorithm._navigate_fun(SimpleAlgorithm.CRUISE_SPEED * 0.5, theta, best_bearing, True)

            preds = PredictionUtils.predict_positions(x, y, v, best_bearing, 0.0)
            self._predictions[self._robot_name] = preds

        Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

        self._send_robot_command(
            RobotCommand(Vl, Vr, Vl, Vr))

        return True
Exemplo n.º 3
0
    def _target_angle(self):
        assert type(self._target) == type([])
        assert len(self._target) > 0

        (tx, ty) = self._target[0]
        mx = self._own_robot['x']
        my = self._own_robot['y']

        return MeasurementUtils.angle(mx, my, tx, ty)
Exemplo n.º 4
0
    def _target_angle(self):
        assert type(self._target) == type([])
        assert len(self._target) > 0

        (tx, ty) = self._target[0]
        mx = self._own_robot['x']
        my = self._own_robot['y']

        return MeasurementUtils.angle(mx, my, tx, ty)
Exemplo n.º 5
0
    def _avoid_close_objects(self, x, y, theta,Otheta):

        #self._logger.info("insert sction _avoid_close_objects");
	distances = self._distances_to_robots()

        new_yield_timestamps = {}

        if self._own_robot['v'] <= 0.1:
            for robot_name, distance in distances:
                if distance > FearfulAlgorithm.CIRCLES_RADIUS * 2.0:
                    break

                if self._fear_factors[self._robot_name] > self._fear_factors[robot_name]:
                    if robot_name not in self._yield_timestamps:
                        new_yield_timestamps[robot_name] = self._own_robot['timestamp'] + self.YIELD_DELAY
                    else:
                        timestamp = self._yield_timestamps[robot_name]
                        if self._own_robot['timestamp'] > timestamp:
                            self._yield_set.add(robot_name)
                            self._own_fear_factor = self._states[robot_name]['fear_factor'] - 0.1
                        else:
                            new_yield_timestamps[robot_name] = timestamp

        self._yield_timestamps = new_yield_timestamps

        bearings = set()

        for robot_name, distance in distances:
            if distance > FearfulAlgorithm.CIRCLES_RADIUS * 1:
                break

            if self._fear_factors[self._robot_name] < self._fear_factors[robot_name]:

                state = self._states[robot_name]
                rx = state['x']
                ry = state['y']

                bearing_to_robot = MeasurementUtils.angle(x, y, rx, ry)
                #bearings.add(bearing_to_robot)
            else:
		self._logger.debug("Avoid Close Object ->>>> stop robot")
                self._send_stop_command()
                return True

        for wx, wy in self._maze_util.get_close_walls_points(x, y, 0.25):
            bearing_to_wall = MeasurementUtils.angle(x, y, wx, wy)
            bearings.add(bearing_to_wall)


        if len(bearings) == 0:
            return False
        else:
            bearings = list(bearings)
            bearings.sort()
            bearings_len = len(bearings)
            bearings.append(bearings[0] + 2.0 * math.pi)

            max_gap = 0
            best_bearing = None
            for i in range(bearings_len):
                gap = abs(bearings[i+1] - bearings[i])
                if gap > max_gap:
                    max_gap = gap
                    best_bearing = MeasurementUtils.normalize_angle(bearings[i] + 0.5 * (bearings[i+1] - bearings[i]))

	    v = FearfulAlgorithm.CRUISE_SPEED
            #v, omega = FearfulAlgorithm._navigate_fun(FearfulAlgorithm.CRUISE_SPEED * 0.5, theta, best_bearing, True)

            preds = PredictionUtils.predict_positions(x, y, v, best_bearing, 0.0)
            self._predictions[self._robot_name] = preds

            #Vl, Vr = FearfulAlgorithm._get_wheel_speeds(v, omega)
       	    #Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,theta,best_bearing,True,None,None,None)
            
	    self._logger.debug("Avoid Close Object")
	    Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,best_bearing,True,None)
       	    self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

        return True
Exemplo n.º 6
0
    def _navigate(self, avail_time):
        dist = None

	#self._logger.info("Nowy kod")

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
	Otheta = self._own_robot['org_theta']	
	Otheta = 1.57 - Otheta

        v = FearfulAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < FearfulAlgorithm.DISTANCE_GOAL:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id

        # ominiecie robota lub robotow
        if self._avoid_close_objects(x, y, theta,Otheta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)
	bearingNew = math.atan2(ty - y, tx - x) #tylko dla nawigacji

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = FearfulAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

	    self._logger.info("find intersectio")
	    Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,bearingNew,False,target_dist)
	    self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
            
	    #v, omega = FearfulAlgorithm._navigate_fun(v, theta, bearing, False)

            #if target_dist < 0.2:
            #    v *= target_dist

            #if target_dist < 0.05:
            #    v = 0

            ##Vl, Vr = FearfulAlgorithm._get_wheel_speeds(v, omega)

            #Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,Otheta,bearing,False,target_dist,tx - x,ty - y)
	    #self._logger.info("FindIntersction Vl: %f; Vr: %f; v: %f; theta: %f; bearing: %f; target_distance: %f; sub: %f,x: %f, y: %f" % (Vl, Vr, v, Otheta, bearing, target_dist, Otheta - bearing,x,y))

            #self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(x, y, best_v, best_bearing, 0.0)
            best_preds = FearfulAlgorithm._cut_predictions(best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(x, y, rand_v, rand_bearing, 0.0)
            rand_preds = FearfulAlgorithm._cut_predictions(rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5, 1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
	    self._logger.info("best pred is None -->>>>> Stop command:")
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            #best_v, omega = FearfulAlgorithm._navigate_fun(best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)


            #if midpoint_dist < 0.5:
            #    best_v *= midpoint_dist

            #Vl, Vr = FearfulAlgorithm._get_wheel_speeds(best_v, omega)

            ##Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(v,Otheta,best_bearing,False,target_dist, mp_x - x, mp_y - y)	   
            ##self._logger.info("Prediction Vl: %f; Vr: %f; v: %f; theta: %f; best_bearing: %f; target_distance: %f; sub: %f,x: %f,y: %f" % (Vl, Vr, v, Otheta, best_bearing, target_dist,Otheta - best_bearing,x,y))
	    
	    self._logger.info("Prediction:")
	    Vl, Vr = FearfulAlgorithm._get_wheel_speeds_new2(self._logger,v,Otheta,best_bearing,False,target_dist)
            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))
Exemplo n.º 7
0
    def _navigate(self, avail_time):
        dist = None

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
        v = SimpleAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < 0.1:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id


        if self._avoid_close_objects(x, y, theta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = SimpleAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

            v, omega = SimpleAlgorithm._navigate_fun(v, theta, bearing, False)

            if target_dist < 0.2:
                v *= target_dist

            if target_dist < 0.05:
                v = 0

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

            self._send_robot_command(
                RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(x, y, best_v, best_bearing, 0.0)
            best_preds = SimpleAlgorithm._cut_predictions(best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA * PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(x, y, rand_v, rand_bearing, 0.0)
            rand_preds = SimpleAlgorithm._cut_predictions(rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5, 1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            best_v, omega = SimpleAlgorithm._navigate_fun(best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)


            if midpoint_dist < 0.5:
                best_v *= midpoint_dist

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(best_v, omega)

            self._send_robot_command(
                RobotCommand(Vl, Vr, Vl, Vr))
Exemplo n.º 8
0
    def _navigate(self, avail_time):
        dist = None

        x = self._own_robot['x']
        y = self._own_robot['y']
        theta = self._own_robot['theta']
        v = SimpleAlgorithm.CRUISE_SPEED

        if self._target is None:
            tx, ty = self._controller.get_new_target()
            self._target = self._maze_util.find_path((x, y), (tx, ty))

        if not self._target_reached and self._target_distance() < 0.1:

            if len(self._target) > 1:
                self._target.pop(0)
            else:
                new_target = self._controller.get_new_target()
                if new_target is None or new_target != self._target[0]:
                    tx, ty = new_target
                    self._target = self._maze_util.find_path((x, y), (tx, ty))
                else:
                    self._target_reached = True
                    self._logger.info("Target reached")
                    self.send_finish_msg()

        space_id = self._maze_util.find_space_by_point((x, y))
        if space_id != self._space_id:
            if self._space_id is not None:
                tx, ty = self._target[-1]
                self._target = self._maze_util.find_path((x, y), (tx, ty))

            self._space_id = space_id

        if self._avoid_close_objects(x, y, theta):
            return

        target = self._target[0]
        tx, ty = target
        bearing = MeasurementUtils.angle(x, y, tx, ty)

        preds = PredictionUtils.predict_positions(x, y, v, bearing, 0.0)
        preds = SimpleAlgorithm._cut_predictions(preds, target)

        self._predictions[self._robot_name] = preds

        target_dist = MeasurementUtils.distance(x, y, tx, ty)

        if not self._find_intersections(preds, self.CIRCLES_RADIUS * 1.5, 0):
            self._own_fear_factor = self._base_fear_factor

            v, omega = SimpleAlgorithm._navigate_fun(v, theta, bearing, False)

            if target_dist < 0.2:
                v *= target_dist

            if target_dist < 0.05:
                v = 0

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(v, omega)

            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))

            return

        for robot_name in list(self._yield_set):
            rx = self._states[robot_name]['x']
            ry = self._states[robot_name]['y']
            if MeasurementUtils.distance(x, y, rx, ry) > 2.0:
                self._yield_set.remove(robot_name)

        best_v = None
        best_bearing = None
        best_midpoint = None
        best_rate = None
        best_preds = None
        self._predictions[self._robot_name] = None

        if self._last_params is not None:
            best_v, best_bearing, best_midpoint = self._last_params

            best_preds = PredictionUtils.predict_positions(
                x, y, best_v, best_bearing, 0.0)
            best_preds = SimpleAlgorithm._cut_predictions(
                best_preds, best_midpoint)

            best_rate = self._rate_predictions(best_preds)

            if self._find_intersections(best_preds, self.CIRCLES_RADIUS, 1):
                best_v = None
                best_bearing = None
                best_midpoint = None
                best_rate = None
                best_preds = None

        try_stop = True

        variants_stop_time = time.time() + avail_time - 0.001
        var_num = 0
        while time.time() < variants_stop_time:
            var_num += 1

            if try_stop:
                rand_v = 0.0
                rand_bearing = theta
                rand_radius = 0.0
                try_stop = False
            else:
                rand_v = random.uniform(0.0, self.CRUISE_SPEED * 2.0)
                rand_bearing = random.uniform(-math.pi, math.pi)
                rand_radius = random.uniform(
                    0.0, self.CRUISE_SPEED * PredictionUtils.CIRCLES_DELTA *
                    PredictionUtils.CIRCLES_NUM)

            mp_x = rand_radius * math.cos(rand_bearing) + x
            mp_y = rand_radius * math.sin(rand_bearing) + y
            rand_midpoint = mp_x, mp_y

            rand_preds = PredictionUtils.predict_positions(
                x, y, rand_v, rand_bearing, 0.0)
            rand_preds = SimpleAlgorithm._cut_predictions(
                rand_preds, rand_midpoint)
            rand_rate = self._rate_predictions(rand_preds)

            if self._find_intersections(rand_preds, self.CIRCLES_RADIUS * 1.5,
                                        1):
                continue

            if best_rate is None or rand_rate < best_rate - 0.5:
                best_v, best_bearing, best_preds, best_rate, best_midpoint \
                    = rand_v, rand_bearing, rand_preds, rand_rate, rand_midpoint
                self._last_params = best_v, best_bearing, best_midpoint

        if best_preds is None:
            self._send_stop_command()
            return
        else:
            self._predictions[self._robot_name] = best_preds

            best_v, omega = SimpleAlgorithm._navigate_fun(
                best_v, theta, best_bearing, False)

            mp_x, mp_y = best_midpoint
            midpoint_dist = MeasurementUtils.distance(x, y, mp_x, mp_y)

            if midpoint_dist < 0.5:
                best_v *= midpoint_dist

            Vl, Vr = SimpleAlgorithm._get_wheel_speeds(best_v, omega)

            self._send_robot_command(RobotCommand(Vl, Vr, Vl, Vr))