Exemplo n.º 1
0
    def __call__(self, p, targets):  # predictions, targets, model
        device = targets.device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(
            1, device=device), torch.zeros(1, device=device)
        tcls, tbox, indices, anchors = self.build_targets(p,
                                                          targets)  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                ps = pi[b, a, gj,
                        gi]  # prediction subset corresponding to targets

                # Regression
                pxy = ps[:, :2].sigmoid() * 2. - 0.5
                pwh = (ps[:, 2:4].sigmoid() * 2)**2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False,
                               CIoU=True)  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                score_iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    sort_id = torch.argsort(score_iou)
                    b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[
                        sort_id], gi[sort_id], score_iou[sort_id]
                tobj[b, a, gj,
                     gi] = (1.0 - self.gr) + self.gr * score_iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(ps[:, 5:], self.cn,
                                        device=device)  # targets
                    t[range(n), tcls[i]] = self.cp
                    lcls += self.BCEcls(ps[:, 5:], t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[
                    i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size

        return (lbox + lobj + lcls) * bs, torch.cat(
            (lbox, lobj, lcls)).detach()
Exemplo n.º 2
0
    def __call__(self, p, targets):  # predictions, targets
        lcls = torch.zeros(1, device=self.device)  # class loss
        lbox = torch.zeros(1, device=self.device)  # box loss
        lobj = torch.zeros(1, device=self.device)  # object loss
        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions

                # Regression
                pxy = pxy.sigmoid() * 2 - 0.5
                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    j = iou.argsort()
                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
                if self.gr < 1:
                    iou = (1.0 - self.gr) + self.gr * iou
                tobj[b, a, gj, gi] = iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
                    t[range(n), tcls[i]] = self.cp
                    lcls += self.BCEcls(pcls, t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size

        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
Exemplo n.º 3
0
def detect(
        model="mobilenet_thin",  # A model option for being cool
        weights='yolov5s.pt',  # model.pt path(s)
        source='data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        update=False,  # update all models
        project='runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
):
    w, h = 432, 368
    e = TfPoseEstimator(get_graph_path(model), target_size=(w, h))
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith(
        '.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(project)
    #save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check image size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    breakCond = False
    if device.type != 'cpu':
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Openpose getting keypoints and individual crops
        print("\n")
        myImg = im0s.copy()
        keypoints, humans = getKeyPoints(myImg, e, w, h)
        crops = [
            getCrop(point[0], myImg, 10, device, point[1] / 2)
            for point in keypoints
        ]

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        t2 = time_synchronized()

        # Need to adjust bboxes to full image
        if len(pred) > 0:
            breakCond = True

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(
                ), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Check if any overlap between keypoint and det (handheld weapon)
                for detection in det:
                    for crop in crops:
                        if bbox_iou(detection, crop) > 0:
                            cv2.putText(im0, "Spider-Sense Tingling!",
                                        (30, 90), cv2.FONT_HERSHEY_SIMPLEX, 3,
                                        (255, 0, 0), 5)
                            break

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors(c, True),
                                     line_thickness=line_thickness)
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

                # write keypoint boxes
                for *xyxy, conf, cls in reversed(crops):
                    plot_one_box(xyxy,
                                 imc,
                                 label="keyP",
                                 color=colors(c, True),
                                 line_thickness=line_thickness)

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            im0 = TfPoseEstimator.draw_humans(im0, humans, imgcopy=False)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

    print(f'Done. ({time.time() - t0:.3f}s)')