Exemplo n.º 1
0
    def __init__(self):
        self.learning_rate_decay_steps = int(
            parse_dict.get("learning_rate_decay_steps", "10000000"))
        self.learning_rate_decay_rate = float(
            parse_dict.get("learning_rate_decay_steps", "0.9"))
        self.dropout_keep_deep = [1, 1, 1, 1, 1]
        self.hidden_units = [
            int(i) for i in parse_dict.get("hidden_units", "").split(",")
        ]
        self.max_data_size = int(parse_dict.get("max_data_size", "8000000"))
        self.learning_rate = float(parse_dict.get("learning_rate", "0.001"))
        self.l2_reg = float(parse_dict.get("l2_reg", "0.00001"))
        self.batch_size = 1024
        self.hidden_units = [512, 256, 128]

        self.alg_name = parse_dict.get("alg_name", "dnn_tensorboard")
        self.action_type = parse_dict.get("action_type", "train")
        self.epochs = int(parse_dict.get("epochs", "4"))
        self.batch_size = int(parse_dict.get("batch_size", ""))
        self.embedding_size = int(parse_dict.get("embedding_size", "16"))
        self.cate_feats_size = int(parse_dict.get("cate_feats_size", "10000"))
        self.num_batch_size = int(parse_dict.get("num_batch_size", "100"))
        self.feat_conf_path = parse_dict.get("feat_conf_path", None)
        self.train_path = parse_dict.get("train_path", "")
        self.predict_path = parse_dict.get("predict_path", "")
        self.model_pb = parse_dict.get("model_pb", "")
        self.save_model_checkpoint = parse_dict.get("save_model_checkpoint",
                                                    "")
        self.model_restore = parse_dict.get("model_restore", "0")
        self.restore_model_checkpoint = parse_dict.get(
            "restore_model_checkpoint", "")

        self.cont_field_size, self.vector_feats_size, self.cate_field_size, self.multi_feats_size, \
            self.multi_field_size, self.multi_feats_range = my_utils.feat_size(self.feat_conf_path, self.alg_name)
Exemplo n.º 2
0
    def __init__(self):
        self.alg_name = sys.argv[1]
        self.action_type = sys.argv[2]
        self.epochs = int(sys.argv[3])
        self.embedding_size = int(sys.argv[4])
        self.cate_feats_size = int(sys.argv[5])
        self.num_batch_size = int(sys.argv[6])
        self.feat_conf_path = sys.argv[7]
        self.train_path = sys.argv[8]
        self.predict_path = sys.argv[9]
        self.model_pb = sys.argv[10]
        self.save_model_checkpoint = sys.argv[11]
        self.model_restore = int(sys.argv[12])
        self.restore_model_checkpoint = sys.argv[13]
        # self.summary_log = sys.argv[14]
        self.learning_rate = 0.001
        self.hidden_units = [512, 256, 128]
        self.dropout_keep_deep = [1, 1, 1, 1, 1]
        self.learning_rate_decay_steps = 10000000
        self.learning_rate_decay_rate = 0.9

        self.l2_reg = 0.00001
        self.batch_size = 1024

        self.cont_field_size, self.vector_feats_size, self.cate_field_size, self.multi_feats_size, \
            self.multi_field_size, self.multi_feats_range = my_utils.feat_size(self.feat_conf_path, self.alg_name)
Exemplo n.º 3
0
    def __init__(self):
        self.learning_rate_decay_steps = int(
            parse_dict.get("learning_rate_decay_steps", "10000000"))
        self.learning_rate_decay_rate = float(
            parse_dict.get("learning_rate_decay_steps", "0.9"))
        # self.hidden_units = [int(i) for i in parse_dict.get("hidden_units", "").split(",")]
        self.max_data_size = int(parse_dict.get("max_data_size", "8000000"))
        self.learning_rate = float(parse_dict.get("learning_rate", "0.001"))
        self.l2_reg = float(parse_dict.get("l2_reg", "0.00001"))
        self.batch_size = int(parse_dict.get("batch_size", "1024"))
        self.embedding_size = int(parse_dict.get("embedding_size", "64"))
        self.cate_feats_size = int(parse_dict.get("cate_feats_size", "200000"))
        self.num_batch_size = int(parse_dict.get("num_batch_size", "100"))

        self.autoint_layer_num = int(parse_dict.get("autoint_layer_num", "2"))
        self.autoint_emb_size = int(parse_dict.get("autoint_emb_size", "32"))
        self.autoint_head_num = int(parse_dict.get("autoint_head_num", "2"))
        self.autoint_use_res = int(parse_dict.get("autoint_use_res", "1"))

        self.experts_units = int(parse_dict.get("experts_units ", "1024"))
        self.experts_num = int(parse_dict.get("experts_num ", "8"))
        self.label1_weight = float(parse_dict.get("label1_weight", "0.5"))
        self.label2_weight = float(parse_dict.get("label2_weight", "0.5"))

        self.action_type = parse_dict.get("action_type", "train")
        self.epochs = int(parse_dict.get("epochs", "2"))
        self.alg_name = parse_dict.get("alg_name", "mmoe")
        self.feat_conf_path = parse_dict.get("feat_conf_path",
                                             "files/conf/esmm")
        self.train_path = parse_dict.get("train_path",
                                         "files/data/esmm/train/")
        self.predict_path = parse_dict.get("predict_path",
                                           "files/data/esmm/pred/")
        self.model_pb = parse_dict.get("model_pb",
                                       "files/model_save_pb/" + self.alg_name)
        # self.model_pb = parse_dict.get("model_pb", "D:\\PycharmProjects\\deep_learing_estimator\\files\\model_save_pb\\" + self.alg_name)
        self.model_dir = parse_dict.get(
            "model_dir", "files/model_save_dir/" + self.alg_name)

        self.hidden_units = [1024, 512, 256]
        self.dropout_keep_deep = [1, 1, 1, 1, 1]
        self.dropout_keep_fm = [1, 1, 1, 1, 1]
        self.is_GPU = 1
        self.num_cpu = 10
        self.log_step_count_steps = 500
        self.save_checkpoints_steps = 500
        self.save_summary_steps = 500
        self.keep_checkpoint_max = 2
        self.rate = 1.0

        self.cont_field_size, self.vector_feats_size, self.cate_field_size, self.multi_feats_size, \
        self.multi_feats_range, self.attention_feats_size, self.attention_range = my_utils.feat_size(self.feat_conf_path,
                                                                                                     self.alg_name)
Exemplo n.º 4
0
    def __init__(self):
        self.dt = sys.argv[1]
        self.alg_name = sys.argv[2]
        self.mode = sys.argv[3]
        self.epochs = int(sys.argv[4])
        self.embedding_size = int(sys.argv[5])
        self.cate_feats_size = int(sys.argv[6])
        self.feat_conf_path = sys.argv[7]
        self.train_path = sys.argv[8] + self.dt + "/"
        self.predict_path = sys.argv[9] + self.dt + "/"
        self.model_pb = sys.argv[10] + self.dt + "/"
        self.model_dir = sys.argv[11]
        self.is_GPU = int(sys.argv[12])
        hidden_units_str = sys.argv[13]
        self.hidden_units = list()  # self.hidden_units = [1024, 512, 256]
        self.learning_rate = 0.001
        self.dropout_keep_deep = [1, 1, 1, 1, 1]
        self.dropout_keep_fm = [1, 1, 1, 1, 1]
        self.learning_rate_decay_steps = 10000000
        self.learning_rate_decay_rate = 0.9
        self.l2_reg = 0.00001
        self.batch_size = 1024
        self.num_cpu = 20
        self.log_step_count_steps = 500
        self.save_checkpoints_steps = 100
        self.save_summary_steps = 500
        self.keep_checkpoint_max = 3

        self.cont_field_size, self.vector_feats_size, self.cate_field_size, self.multi_feats_size, \
            self.multi_feats_range, self.attention_feats_size, self.attention_range = my_utils.feat_size(self.feat_conf_path, self.alg_name)

        hidden_arr = hidden_units_str.split(",")
        for i in range(len(hidden_arr)):
            self.hidden_units.append(int(hidden_arr[i]))