Exemplo n.º 1
0
def do_detect(img_raw, net, device, cfg):
    resize = 1
    img = np.float32(img_raw)

    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    tic = time.time()
    loc, conf, landms = net(img)  # forward pass
    print('net forward time: {:.4f}'.format(time.time() - tic))

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, args.nms_threshold)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    landms = landms[:args.keep_top_k, :]

    # dets = np.concatenate((dets, landms), axis=1)
    return dets, landms
def parse_det_offset(pos, scale, offset, config):
    size, score, down, nms_thresh = config.test_size, config.score_thres, config.stride, config.nms_thres
    height = scale[0, :, :]
    width = scale[1, :, :]

    offset_y = offset[0, :, :]
    offset_x = offset[1, :, :]
    y_c, x_c = np.where(pos > score)
    boxs = []
    if len(y_c) > 0:
        for i in range(len(y_c)):
            h = np.exp(height[y_c[i], x_c[i]]) * down
            # w = 0.41 * h
            w = np.exp(width[y_c[i], x_c[i]]) * down
            o_y = offset_y[y_c[i], x_c[i]]
            o_x = offset_x[y_c[i], x_c[i]]
            s = pos[y_c[i], x_c[i]]
            x1, y1 = max(0, (x_c[i] + o_x + 0.5) * down - w / 2), max(
                0, (y_c[i] + o_y + 0.5) * down - h / 2)
            boxs.append(
                [x1, y1, min(x1 + w, size[1]),
                 min(y1 + h, size[0]), s])
        boxs = np.asarray(boxs, dtype=np.float32)
        keep = py_cpu_nms(boxs, nms_thresh)
        boxs = boxs[keep, :]
    return boxs
Exemplo n.º 3
0
def box_handle(img, conf, im_height, im_width, scale, loc, landms):
    priorbox = PriorBox(cfg_mnet, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg_mnet['variance'])
    boxes = boxes * scale
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data,
                          cfg_mnet['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1
    landms = landms.cpu().numpy()
    inds = np.where(scores > confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]
    order = scores.argsort()[::-1]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, nms_threshold)
    dets = dets[keep, :]
    landms = landms[keep]
    dets = np.concatenate((dets, landms), axis=1)
    return dets
def parse_det_offset(output, config):
    size, score, down, nms_thresh = config.test_size, config.score_thres, config.stride, config.nms_thres
    pos, scale, offset = output
    print(pos.shape)
    pos = np.squeeze(pos.data.cpu())
    height = scale.data.cpu()[0, 0, :, :].numpy()
    width = scale.data.cpu()[0, 1, :, :].numpy()

    offset_y = offset.data.cpu()[0, 0, :, :].numpy()
    offset_x = offset.data.cpu()[0, 1, :, :].numpy()
    y_c, x_c = np.where(pos > score)
    boxs = []
    if len(y_c) > 0:
        for i in range(len(y_c)):
            h = np.exp(height[y_c[i], x_c[i]]) * down
            # w = 0.41 * h
            w = np.exp(width[y_c[i], x_c[i]]) * down
            o_y = offset_y[y_c[i], x_c[i]]
            o_x = offset_x[y_c[i], x_c[i]]
            s = pos[y_c[i], x_c[i]]
            x1, y1 = max(0, (x_c[i] + o_x + 0.5) * down - w / 2), max(
                0, (y_c[i] + o_y + 0.5) * down - h / 2)
            boxs.append(
                [x1, y1, min(x1 + w, size[1]),
                 min(y1 + h, size[0]), s])
        boxs = np.asarray(boxs, dtype=np.float32)
        # keep = nms(boxs, nms_thresh, True) # cpu nms
        keep = py_cpu_nms(boxs, nms_thresh)
        boxs = boxs[keep, :]
    return boxs
Exemplo n.º 5
0
def recognition(args):
    image = cv2.imread(args.filename)
    re_list = HyperLPR_PlateRecogntion(image)  # 识别结果
    cls_boxes = []
    cls_scores = []
    if len(re_list) > 0:
        for item in re_list:
            score, box = item[1], item[2]
            cls_scores.append(score)
            cls_boxes.append(box)
        cls_boxes = np.array(cls_boxes)
        cls_scores = np.array(cls_scores)
        dets = np.hstack(
            (cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32)
        NMS_THREASH = 0.45
        det_re = py_cpu_nms(dets, NMS_THREASH)
        re_list = [re_list[x] for x in det_re]
    for item in re_list:
        label, probolity, position = item[0], item[1], item[2]
        cv2.rectangle(image, (position[0], position[1]),
                      (position[2], position[3]), (0, 255, 0), 2)
        position = (position[0], position[1])
        image = draw_chinese(image, position, label)
        # cv2.putText(image,label,(position[0],position[1]+10),cv2.FONT_HERSHEY_SIMPLEX,0.8,(255,2,255),2)
    image_name = os.path.basename(args.filename)
    cv2.imwrite((args.save_dir + "/" + image_name), image)
Exemplo n.º 6
0
    def execute_batch_mlu(self,net_output,batch_shape,threshold=0.8,topk=5000,keep_topk=750,nms_threshold=0.2):
        locs,confs,landmss = net_output
        nB, nCh, im_height, im_width = batch_shape
        scale = torch.Tensor([im_width, im_height]*2)
        scale1 = torch.Tensor([im_width, im_height] * 5)

        detss = []

        if im_height == self.im_height and im_width == self.im_width and self._priors is not None:
            pass
        else:
            self.set_default_size([im_height, im_width, nCh])

        priors = self._priors.unsqueeze(dim=0)

        boxes = batch_decode(locs, priors, self.cfg['variance'])
        boxes = boxes * scale

        scores = confs[:, :, 1]

        landms = batch_decode_landm(landmss, priors, self.cfg['variance'])
        landms = landms * scale1

        landms = landms.data.cpu().numpy()
        scores = scores.data.cpu().numpy()
        boxes = boxes.data.cpu().numpy()

        for n in range(nB):
            _landms = landms[n]
            _scores = scores[n]
            _boxes = boxes[n]

            # ignore low scores
            inds = np.where(_scores > threshold)[0]
            _boxes = _boxes[inds]
            _landms = _landms[inds]
            _scores = _scores[inds]

            # keep top-K before NMS
            order = _scores.argsort()[::-1][:topk]
            _boxes = _boxes[order]
            _landms = _landms[order]
            _scores = _scores[order]

            # do NMS
            dets = np.hstack((_boxes, _scores[:, np.newaxis])).astype(np.float32, copy=False)
            keep = py_cpu_nms(dets, nms_threshold)
            dets = dets[keep, :]
            _landms = _landms[keep]

            # keep top-K faster NMS
            dets = dets[:keep_topk, :]
            _landms = _landms[:keep_topk, :]
            # x0,y0,x1,y1,score,landmarks...
            dets = np.concatenate((dets, _landms), axis=1)
            detss.append(dets)
        return detss
Exemplo n.º 7
0
def pipeline(net, frame, args, device, resize, cfg):
    img = np.float32(frame)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    loc, conf, landms = net(img)  # forward pass
    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, args.nms_threshold)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    landms = landms[:args.keep_top_k, :]
    dets = np.concatenate((dets, landms), axis=1)

    objects_to_draw = dict(draw_box=True, draw_text=True, draw_landmarks=True)
    frame = draw(frame, dets, args.vis_thres, **objects_to_draw)
    return frame
Exemplo n.º 8
0
def process_face_data(cfg,
                      im,
                      im_height,
                      im_width,
                      loc,
                      scale,
                      conf,
                      landms,
                      resize,
                      top_k=5000,
                      nms_threshold=0.4,
                      keep_top_k=750):
    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.cuda()
    priors_data = priors.data
    boxes = decode(loc.data.squeeze(0), priors_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).cpu().detach().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), priors_data, cfg['variance'])
    scale_landm = torch.from_numpy(
        np.array([
            im.shape[3], im.shape[2], im.shape[3], im.shape[2], im.shape[3],
            im.shape[2], im.shape[3], im.shape[2], im.shape[3], im.shape[2]
        ]))
    scale_landm = scale_landm.float()
    scale_landm = scale_landm.cuda()
    landms = landms * scale_landm / resize
    landms = landms.cpu().numpy()

    # ignore low score
    inds = np.where(scores > 0.6)[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = np.argsort(-scores)[:top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do nms
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(float, copy=False)
    keep = py_cpu_nms(dets, nms_threshold)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K fater NMS
    dets = dets[:keep_top_k, :]
    landms = landms[:keep_top_k, :]
    dets = np.concatenate((dets, landms), axis=1)

    result_data = dets[:, :5].tolist()

    return result_data
Exemplo n.º 9
0
def nms(dets, thresh, force_cpu=False):
    """Dispatch to either CPU or GPU NMS implementations."""

    if dets.shape[0] == 0:
        return []
    if force_cpu:
        #return cpu_soft_nms(dets, thresh, method = 0)
        # return cpu_nms(dets, thresh)
        return py_nms.py_cpu_nms(dets, thresh)
    return gpu_nms(dets, thresh)
Exemplo n.º 10
0
def GetFacialPoints(img_raw):
    img = np.float32(img_raw)
    height, width, _ = img_raw.shape
    scale = torch.Tensor([width, height, width, height])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    loc, conf, landms = net(img)  # forward pass

    priorbox = PriorBox(cfg, image_size=(height, width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / config.resize
    boxes = boxes.cpu().detach().numpy()
    scores = conf.squeeze(0).data.cpu().detach().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / config.resize
    landms = landms.cpu().detach().numpy()

    # ignore low scores
    inds = np.where(scores > config.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:config.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, config.nms_threshold)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:config.keep_top_k, :]
    landms = landms[:config.keep_top_k, :]

    dets = np.concatenate((dets, landms), axis=1)
    torch.cuda.empty_cache()
    return dets
Exemplo n.º 11
0
    def detect_image(self, img) -> List[FaceDetection]:
        # TODO: add detect logic for single image
        print(np.shape(img))
        tic = time.time()
        img = np.float32(img)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(self.device)
        scale = scale.to(self.device)

        loc, conf, landms = self.net(img)  # forward pass
        
        priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(self.device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
        boxes = boxes * scale / self.resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)

        keep = py_cpu_nms(dets, args.nms_threshold)

        dets = dets[keep, :]

        dets = dets[:args.keep_top_k, :]

        # show image
        box_list = []
        for b in dets:
            if b[4] < args.vis_thres:
                continue
            score = b[4]
            b = list(map(int, b))
            box_list.append(FaceDetection(b[0], b[1], b[2], b[3], 0, score))

        print('net forward time: {:.4f}'.format(time.time() - tic))

        return box_list
Exemplo n.º 12
0
def decode_output(image, detection_boxes, detection_scores, detection_landmark, cfg_plate):
    # print(image.shape[2:])
    image_h, image_w = image.shape[2:]
    # image_h, image_w, _ = image.shape
    # cfg_plate['image_size'] = (480, 640)
    detection_scores = F.softmax(detection_scores, dim=-1)
    # detection_scores = detection_scores.cpu().detach().numpy()
    # priorbox = PriorBox(cfg_plate,
    #                     image_size=(cfg_plate['image_size'], cfg_plate['image_size']), phase='test')  # height, width
    priorbox = PriorBox(cfg_plate,
                        image_size=(image_h, image_w), phase='test')  # height, width
    priors = priorbox.forward()
    priors = priors.to(torch.device('cuda'))
    prior_data = priors.data
    boxes = decode(detection_boxes.data.squeeze(0), prior_data, cfg_plate['variance'])
    # boxes[:, 0::2] = boxes[:, 0::2] * cfg_plate['image_size']  # width
    # boxes[:, 1::2] = boxes[:, 1::2] * cfg_plate['image_size']  # height
    boxes[:, 0::2] = boxes[:, 0::2] * image_w  # width
    boxes[:, 1::2] = boxes[:, 1::2] * image_h  # height
    boxes = boxes.cpu().numpy()
    scores = scores = detection_scores.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(detection_landmark.data.squeeze(0), prior_data, cfg_plate['variance'])
    # landms[:, 0::2] = landms[:, 0::2] * cfg_plate['image_size']
    # landms[:, 1::2] = landms[:, 1::2] * cfg_plate['image_size']
    landms[:, 0::2] = landms[:, 0::2] * image_w
    landms[:, 1::2] = landms[:, 1::2] * image_h
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > cfg_plate['confidence_threshold'])[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:cfg_plate['top_k']]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
    keep = py_cpu_nms(dets, cfg_plate['nms_threshold'])
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:cfg_plate['keep_top_k'], :]
    landms = landms[:cfg_plate['keep_top_k'], :]
    dets = np.concatenate((dets, landms), axis=1)
    # draw_ouput2(image, dets)
    return dets
Exemplo n.º 13
0
def postproc_frame(boxes: np.ndarray,
                   scores: np.ndarray,
                   score_thresh=0.75,
                   nms_thresh=0.4,
                   top_k=500,
                   keep_top_k=5) -> np.ndarray:
    inds = (scores > score_thresh).nonzero()[0]
    boxes = boxes[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:top_k]
    boxes = boxes[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis]))
    dets = dets.astype(np.float32, copy=False)
    keep = py_cpu_nms(dets, nms_thresh)
    dets = dets[keep, :]

    # keep top-K faster NMS
    dets = dets[:keep_top_k, :]
    return dets
Exemplo n.º 14
0
def do_inference(net, img_raw):

    img = np.float32(img_raw)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    tic = time.time()
    loc, conf, landms = net(img)  # forward pass
    print('net forward time: {:.4f}'.format(time.time() - tic))

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, args.nms_threshold)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    landms = landms[:args.keep_top_k, :]

    dets = np.concatenate((dets, landms), axis=1)

    # show image
    if args.save_image:
        for b in dets:
            if b[4] < args.vis_thres:
                continue
            text = "{:.4f}".format(b[4])
            b = list(map(int, b))
            cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
            cx = b[0]
            cy = b[1] + 12
            cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX, 0.5,
                        (255, 255, 255))

            # landms
            cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
            cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
            cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
            cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
            cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
Exemplo n.º 15
0
def main():
    args = get_args()
    torch.set_grad_enabled(False)
    cfg = None
    if args.network == "mobile0.25":
        cfg = cfg_mnet
    elif args.network == "resnet50":
        cfg = cfg_re50
    # net and model
    net = RetinaFace(cfg=cfg, phase="test")
    net = load_model(net, args.trained_model, args.cpu)
    net.eval()
    print("Finished loading model!")
    print(net)
    cudnn.benchmark = True
    device = torch.device("cpu" if args.cpu else "cuda")
    net = net.to(device)

    args.save_folder.mkdir(exist_ok=True)

    fw = open(os.path.join(args.save_folder, args.dataset + "_dets.txt"), "w")

    # testing dataset
    testset_folder = os.path.join("data", args.dataset, "images/")
    testset_list = os.path.join("data", args.dataset, "img_list.txt")
    with open(testset_list, "r") as fr:
        test_dataset = fr.read().split()
    num_images = len(test_dataset)

    # testing scale
    resize = 1

    _t = {"forward_pass": Timer(), "misc": Timer()}

    # testing begin
    for i, img_name in enumerate(test_dataset):
        image_path = testset_folder + img_name + ".jpg"
        img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)

        img = np.float32(img_raw)
        if resize != 1:
            img = cv2.resize(img,
                             None,
                             None,
                             fx=resize,
                             fy=resize,
                             interpolation=cv2.INTER_LINEAR)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        _t["forward_pass"].tic()
        loc, conf, landms = net(img)  # forward pass
        _t["forward_pass"].toc()
        _t["misc"].tic()
        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg["variance"])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data,
                              cfg["variance"])
        scale1 = torch.Tensor([
            img.shape[3],
            img.shape[2],
            img.shape[3],
            img.shape[2],
            img.shape[3],
            img.shape[2],
            img.shape[3],
            img.shape[2],
            img.shape[3],
            img.shape[2],
        ])
        scale1 = scale1.to(device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        # order = scores.argsort()[::-1][:args.top_k]
        order = scores.argsort()[::-1]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)

        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        # dets = dets[:args.keep_top_k, :]
        # landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)
        _t["misc"].toc()

        # save dets
        if args.dataset == "FDDB":
            fw.write("{:s}\n".format(img_name))
            fw.write("{:.1f}\n".format(dets.shape[0]))
            for k in range(dets.shape[0]):
                xmin = dets[k, 0]
                ymin = dets[k, 1]
                xmax = dets[k, 2]
                ymax = dets[k, 3]
                score = dets[k, 4]
                w = xmax - xmin + 1
                h = ymax - ymin + 1
                # fw.write('{:.3f} {:.3f} {:.3f} {:.3f} {:.10f}\n'.format(xmin, ymin, w, h, score))
                fw.write("{:d} {:d} {:d} {:d} {:.10f}\n".format(
                    int(xmin), int(ymin), int(w), int(h), score))
        print("im_detect: {:d}/{:d} forward_pass_time: {:.4f}s misc: {:.4f}s".
              format(i + 1, num_images, _t["forward_pass"].average_time,
                     _t["misc"].average_time))

        # show image
        if args.save_image:
            for b in dets:
                if b[4] < args.vis_thres:
                    continue
                text = "{:.4f}".format(b[4])
                b = list(map(int, b))
                cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255),
                              2)
                cx = b[0]
                cy = b[1] + 12
                cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX,
                            0.5, (255, 255, 255))

                # landms
                cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
                cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
                cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
                cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
                cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
            # save image
            if not os.path.exists("./results/"):
                os.makedirs("./results/")
            name = "./results/" + str(i) + ".jpg"
            cv2.imwrite(name, img_raw)

    fw.close()
Exemplo n.º 16
0
def get_face_bboxes():
    good_dets = {}
    for image in tqdm(os.listdir(input_dir)):
        img_raw = cv2.imread(str(input_dir / image), cv2.IMREAD_COLOR)
        img = np.float32(img_raw)

        if resize != 1:
            img = cv2.resize(img,
                             None,
                             None,
                             fx=resize,
                             fy=resize,
                             interpolation=cv2.INTER_LINEAR)

        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        _t[forward_pass_det].tic()
        loc, conf, _ = net(img)  # forward pass
        _t[forward_pass_det].toc()

        _t[misc_det].tic()
        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg["variance"])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]

        # ignore low scores
        inds = np.where(scores > confidence_threshold)[0]
        boxes = boxes[inds]
        # landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        # order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        # landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        # landms = landms[keep]

        good_det = []
        for b in dets:
            if b[4] < vis_thres:
                continue
            good_det.append(b)

        good_dets[image] = good_det
        _t[misc_det].toc()

    print("im_detect: [forward_pass_time: {:.4f}s misc: {:.4f}s] per image".
          format(_t[forward_pass_det].average_time, _t[misc_det].average_time))
    return good_dets
Exemplo n.º 17
0
    def detect(self, frame):
        resize = 1
        img = np.float32(frame)

        im_height, im_width, _ = img.shape
        scale = torch.Tensor([im_width, im_height, im_width, im_height])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(self.device)
        scale = scale.to(self.device)

        loc, conf, landms = self.net(img)

        priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(self.device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(
            0), prior_data, self.cfg['variance'])
        scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2]])
        scale1 = scale1.to(self.device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > self.confidence)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:self.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
            np.float32, copy=False)
        keep = py_cpu_nms(dets, self.nms_thresh)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:self.keep_top_k, :]
        landms = landms[:self.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)

        results = []
        for det in dets:
            r = {}
            r["point"] = {}
            r["point"]["x1"] = int(det[0])
            r["point"]["y1"] = int(det[1])
            r["point"]["x2"] = int(det[2])
            r["point"]["y2"] = int(det[3])
            r["confidence"] = det[4]
            r["landmark"] = {}
            r["landmark"]["p1_x"] = int(det[5])
            r["landmark"]["p1_y"] = int(det[6])
            r["landmark"]["p2_x"] = int(det[7])
            r["landmark"]["p2_y"] = int(det[8])
            r["landmark"]["p3_x"] = int(det[9])
            r["landmark"]["p3_y"] = int(det[10])
            r["landmark"]["p4_x"] = int(det[11])
            r["landmark"]["p4_y"] = int(det[12])
            r["landmark"]["p5_x"] = int(det[13])
            r["landmark"]["p5_y"] = int(det[14])
            results.append(r)
        return results
Exemplo n.º 18
0
def face_detector(frame):
    img_raw = frame.copy()
    img = np.float32(img_raw)
    if resize != 1:
        img = cv2.resize(img,
                         None,
                         None,
                         fx=resize,
                         fy=resize,
                         interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    loc, conf, landms = net(img)  # forward pass
    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > CONFIDENCE)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:5000]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, NMS_THRESHOLD)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:750, :]
    landms = landms[:750, :]

    dets = np.concatenate((dets, landms), axis=1)

    bboxs = []
    for b in dets:
        if b[4] < VIZ_THRESHOLD:
            continue
        b = list(map(int, b))

        margin = 5

        x1, y1, x2, y2 = b[0], b[1], b[2], b[3]

        img_h, img_w, _ = frame.shape
        w = x2 - x1
        h = y2 - y1
        margin = int(min(w, h) * margin / 100)
        x_a = x1 - margin
        y_a = y1 - margin
        x_b = x1 + w + margin
        y_b = y1 + h + margin
        if x_a < 0:
            x_b = min(x_b - x_a, img_w - 1)
            x_a = 0
        if y_a < 0:
            y_b = min(y_b - y_a, img_h - 1)
            y_a = 0
        if x_b > img_w:
            x_a = max(x_a - (x_b - img_w), 0)
            x_b = img_w
        if y_b > img_h:
            y_a = max(y_a - (y_b - img_h), 0)
            y_b = img_h

        name = ""
        face = frame[y_a:y_b, x_a:x_b]
        rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
        encodings = face_recognition.face_encodings(rgb,
                                                    [(y_a, x_b, y_b, x_a)])
        matches = face_recognition.compare_faces(face_data["encodings"],
                                                 encodings[0],
                                                 tolerance=0.55)
        if True in matches:
            matchedIdxs = [i for (i, b) in enumerate(matches) if b]
            counts = {}

            for i in matchedIdxs:
                name = face_data["names"][i]
                counts[name] = counts.get(name, 0) + 1

            name = max(counts, key=counts.get)
        cv2.putText(img_raw, name, (x_a + 10, y_a), cv2.FONT_HERSHEY_SIMPLEX,
                    1, (255, 0, 255), 1, cv2.LINE_AA)
        cv2.rectangle(img_raw, (x_a, y_a), (x_b, y_b), (255, 0, 0), 1)
        bboxs.append([x_a, y_a, x_b, y_b])

    return img_raw, bboxs
    def Predict(self,
                img_path="test.jpg",
                thresh=0.5,
                out_img_path="result.jpg"):
        image_path = img_path
        confidence_threshold = thresh
        vis_thres = thresh
        nms_threshold = 0.4
        top_k = 1000
        keep_top_k = 750
        save_image = True
        name = out_img_path

        device = self.system_dict["local"]["device"]
        net = self.system_dict["local"]["net"]
        cfg = self.system_dict["local"]["cfg"]

        resize = 1
        img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
        img = np.float32(img_raw)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        tic = time.time()
        loc, conf, landms = net(img)  # forward pass
        print('net forward time: {:.4f}'.format(time.time() - tic))

        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data,
                              cfg['variance'])
        scale1 = torch.Tensor([
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2]
        ])
        scale1 = scale1.to(device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:keep_top_k, :]
        landms = landms[:keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)

        # show image
        tmp = {}
        tmp["scores"] = []
        tmp["bboxes"] = []
        tmp["labels"] = []

        for b in dets:
            if b[4] < vis_thres:
                continue
            text = "{:.4f}".format(b[4])
            b = list(map(int, b))
            cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
            cx = b[0]
            cy = b[1] + 12
            cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX, 0.5,
                        (255, 255, 255))
            tmp["scores"].append(b[4])
            tmp["bboxes"].append([b[0], b[1], b[2], b[3]])
            tmp["labels"].append(text)

            # landms
            #cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
            #cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
            #cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
            #cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
            #cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
            # save image

        if save_image:
            cv2.imwrite(name, img_raw)

        return tmp
Exemplo n.º 20
0
def crop_face(net,
              device,
              cfg,
              data_dir,
              target_dir,
              left_scale=0.0,
              right_scale=0.0,
              up_scale=0.0,
              low_scale=0.0):
    resize = 1

    landmark_target_dir = target_dir + '_landmark'

    # testing begin
    for dir, dirs, files in tqdm.tqdm(os.walk(data_dir)):
        new_dir = dir.replace(data_dir, target_dir)
        new_landmark_dir = dir.replace(data_dir, landmark_target_dir)
        if not os.path.isdir(new_dir):
            os.mkdir(new_dir)

        if not os.path.isdir(new_landmark_dir):
            os.mkdir(new_landmark_dir)

        for file in files:
            filepath = os.path.join(dir, file)
            # print(filepath)
            image_path = filepath
            img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)

            if img_raw is None:
                continue

            im_height, im_width, _ = img_raw.shape
            # print(img_raw.shape)

            scale_with = 640
            scale_height = 480
            if im_height > scale_height:
                scale_rate = scale_height / im_height
                img_raw = cv2.resize(
                    img_raw, (int(im_width * scale_rate), scale_height))
            elif im_width > scale_with:
                scale_rate = scale_with / im_width
                img_raw = cv2.resize(img_raw,
                                     (scale_with, int(im_height * scale_rate)))

            img = np.float32(img_raw)

            im_height, im_width, _ = img.shape
            scale = torch.Tensor(
                [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
            img -= (104, 117, 123)
            img = img.transpose(2, 0, 1)
            img = torch.from_numpy(img).unsqueeze(0)
            img = img.to(device)
            scale = scale.to(device)

            # tic = time.time()
            loc, conf, landms = net(img)  # forward pass
            # print('net forward time: {:.4f}'.format(time.time() - tic))

            priorbox = PriorBox(cfg, image_size=(im_height, im_width))
            priors = priorbox.forward()
            priors = priors.to(device)
            prior_data = priors.data
            boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
            boxes = boxes * scale / resize
            boxes = boxes.cpu().numpy()
            scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
            landms = decode_landm(landms.data.squeeze(0), prior_data,
                                  cfg['variance'])
            scale1 = torch.Tensor([
                img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                img.shape[3], img.shape[2]
            ])
            scale1 = scale1.to(device)
            landms = landms * scale1 / resize
            landms = landms.cpu().numpy()

            # ignore low scores
            inds = np.where(scores > args.confidence_threshold)[0]
            boxes = boxes[inds]
            landms = landms[inds]
            scores = scores[inds]

            # keep top-K before NMS
            order = scores.argsort()[::-1][:args.top_k]
            boxes = boxes[order]
            landms = landms[order]
            scores = scores[order]

            # do NMS
            dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                    copy=False)
            keep = py_cpu_nms(dets, args.nms_threshold)
            # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
            dets = dets[keep, :]
            landms = landms[keep]

            # keep top-K faster NMS
            dets = dets[:args.keep_top_k, :]
            landms = landms[:args.keep_top_k, :]

            dets = np.concatenate((dets, landms), axis=1)

            # save image
            if args.save_image:
                max_bb = 0
                max_index = 0
                if len(dets) == 0:
                    continue
                elif len(dets) > 1:
                    print('warning detect more than one:', filepath)

                    # find maximum bounding box
                    for di, b in enumerate(dets):
                        if b[4] < args.vis_thres:
                            continue
                        b = list(map(int, b))
                        b = [p if p > 0 else 0 for p in b]
                        box_w = abs(b[1] - b[3])
                        box_h = abs(b[0] - b[2])

                        if max_bb < max(box_w, box_h):
                            max_bb = max(box_w, box_h)
                            max_index = di
                di = max_index
                b = list(map(int, dets[max_index]))
                # for di, b in enumerate(dets):
                #     if b[4] < args.vis_thres:
                #         continue
                #     text = "{:.4f}".format(b[4])
                #     b = list(map(int, b))
                #     # print(b[0], b[1])
                #     # print(b[2], b[3])

                b = [p if p > 0 else 0 for p in b]
                b[1] -= int((b[3] - b[1]) * up_scale)
                b[3] += int((b[3] - b[1]) * low_scale)
                b[0] -= int((b[2] - b[0]) * left_scale)
                b[2] += int((b[2] - b[0]) * right_scale)
                b[1] = b[1] if b[1] >= 0 else 0
                b[3] = b[3] if b[3] < im_height else im_height - 1
                b[0] = b[0] if b[0] >= 0 else 0
                b[2] = b[2] if b[2] < im_width else im_width - 1

                # retain background
                b_width = b[2] - b[0]
                b_height = b[3] - b[1]

                if b_width > b_height:
                    b[1] -= abs(b_width - b_height) // 2
                    b[3] += abs(b_width - b_height) // 2
                elif b_width < b_height:
                    b[0] -= abs(b_width - b_height) // 2
                    b[2] += abs(b_width - b_height) // 2

                b[1] = b[1] if b[1] >= 0 else 0
                b[3] = b[3] if b[3] < im_height else im_height - 1
                b[0] = b[0] if b[0] >= 0 else 0
                b[2] = b[2] if b[2] < im_width else im_width - 1

                roi_image = np.copy(img_raw[b[1]:b[3], b[0]:b[2]])
                box_w = abs(b[1] - b[3])
                box_h = abs(b[0] - b[2])
                # print(b[1], b[3])
                # print(b[0], b[2])
                # print(box_w, box_h)

                show_image = roi_image.copy()
                leftEyeCenter = (int(landms[di][0] - b[0]),
                                 int(landms[di][1] - b[1]))
                rightEyeCenter = (int(landms[di][2] - b[0]),
                                  int(landms[di][3] - b[1]))
                noseCenter = (int(landms[di][4] - b[0]),
                              int(landms[di][5] - b[1]))
                mouth1 = (int(landms[di][6] - b[0]), int(landms[di][7] - b[1]))
                mouth2 = (int(landms[di][8] - b[0]), int(landms[di][9] - b[1]))

                cv2.circle(show_image, (leftEyeCenter[0], leftEyeCenter[1]), 3,
                           (0, 255, 0), -1)
                cv2.circle(show_image, (rightEyeCenter[0], rightEyeCenter[1]),
                           3, (0, 255, 0), -1)
                cv2.circle(show_image, (noseCenter[0], noseCenter[1]), 3,
                           (0, 255, 0), -1)
                cv2.circle(show_image, (mouth1[0], mouth1[1]), 3, (0, 255, 0),
                           -1)
                cv2.circle(show_image, (mouth2[0], mouth2[1]), 3, (0, 255, 0),
                           -1)

                # compute the angle between the eye centroids
                eye_dis = np.sqrt((leftEyeCenter[0] - rightEyeCenter[0])**2 +
                                  (leftEyeCenter[1] - rightEyeCenter[1])**2)
                # print('eye_dis:', eye_dis)

                if eye_dis < 16.0:
                    angle = 0
                else:
                    dY = rightEyeCenter[1] - leftEyeCenter[1]
                    dX = rightEyeCenter[0] - leftEyeCenter[0]
                    angle = np.degrees(np.arctan2(dY, dX))
                # print('angle:', angle)

                desiredLeftEye = (1.0, 1.0)
                desiredFaceWidth = roi_image.shape[1]
                desiredFaceHeight = roi_image.shape[0]

                # compute the desired right eye x-coordinate based on the
                # desired x-coordinate of the left eye
                desiredRightEyeX = 1.0 - desiredLeftEye[0]
                # determine the scale of the new resulting image by taking
                # the ratio of the distance between eyes in the *current*
                # image to the ratio of distance between eyes in the
                # *desired* image
                # dist = np.sqrt((dX ** 2) + (dY ** 2))
                # desiredDist = (desiredRightEyeX - desiredLeftEye[0])
                # desiredDist *= desiredFaceWidth
                # scale = desiredDist / dist
                scale = desiredFaceWidth / max(roi_image.shape[:2])
                resize_roi_image = cv2.resize(
                    roi_image, (int(roi_image.shape[1] * scale),
                                int(roi_image.shape[0] * scale)))
                # cv2.imshow('resize_roi_image', resize_roi_image)
                # print(max(roi_image.shape))
                # print(scale)

                # compute center (x, y)-coordinates (i.e., the median point)
                # between the two eyes in the input image
                eyesCenter = ((leftEyeCenter[0] + rightEyeCenter[0]) // 2,
                              (leftEyeCenter[1] + rightEyeCenter[1]) // 2)

                # grab the rotation matrix for rotating and scaling the face
                M = cv2.getRotationMatrix2D(eyesCenter, angle, 1.0)

                # apply the affine transformation
                (w, h) = (desiredFaceWidth, desiredFaceHeight)
                aligned_image = cv2.warpAffine(roi_image,
                                               M, (w, h),
                                               flags=cv2.INTER_CUBIC)

                if box_h < box_w:
                    padding_size = abs(box_w - box_h) // 2
                    aligned_image = cv2.copyMakeBorder(aligned_image,
                                                       0,
                                                       0,
                                                       padding_size,
                                                       padding_size,
                                                       cv2.BORDER_CONSTANT,
                                                       value=[0, 0, 0])
                elif box_h > box_w:
                    padding_size = abs(box_w - box_h) // 2
                    aligned_image = cv2.copyMakeBorder(aligned_image,
                                                       padding_size,
                                                       padding_size,
                                                       0,
                                                       0,
                                                       cv2.BORDER_CONSTANT,
                                                       value=[0, 0, 0])

                new_image = cv2.resize(aligned_image, (112, 112),
                                       interpolation=cv2.INTER_AREA)
                new_path = filepath.replace(data_dir, target_dir)
                new_landmark_path = filepath.replace(data_dir,
                                                     landmark_target_dir)
                new_path = new_path.replace(new_path.split('.')[-1], 'jpg')
                new_landmark_path = new_landmark_path.replace(
                    new_landmark_path.split('.')[-1], 'jpg')
                # print(new_path)
                cv2.imwrite(new_path, new_image)
Exemplo n.º 21
0
def detect_faces(ops, img_raw):
    img = np.float32(img_raw)
    if ops.resize != 1:
        img = cv2.resize(img,
                         None,
                         None,
                         fx=resize,
                         fy=resize,
                         interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= ops.color_mean
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    loc, conf, landms = detect_model(img)  # forward pass

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / ops.resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / ops.resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > ops.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:ops.keep_top_k]
    # order = scores.argsort()[::-1]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, ops.nms_threshold)

    dets = dets[keep, :]
    landms = landms[keep]

    dets = np.concatenate((dets, landms), axis=1)

    return dets
Exemplo n.º 22
0
def main():
    cfg = None
    if args.network == "mobile0.25":
        cfg = cfg_mnet
    elif args.network == "resnet18":
        cfg = cfg_re18
    elif args.network == "resnet34":
        cfg = cfg_re34
    elif args.network == "resnet50":
        cfg = cfg_re50
    elif args.network == "Efficientnet-b0":
        cfg = cfg_eff_b0
    elif args.network == "Efficientnet-b4":
        cfg = cfg_eff_b4
    # net and model
    net = RetinaFace(cfg=cfg, phase='test')
    net = load_model(net, args.trained_model, args.cpu)
    net.eval()
    print('Finished loading model!')
    print(net)
    cudnn.benchmark = True
    device = torch.device("cpu" if args.cpu else "cuda")
    net = net.to(device)

    # testing dataset
    testset_folder = args.dataset_folder
    # testset_list = args.dataset_folder[:-7] + "wider_val.txt"
    # with open(testset_list, 'r') as fr:
    #     test_dataset = fr.read().split()
    test_dataset = []
    for event in os.listdir(testset_folder):
        subdir = os.path.join(testset_folder, event)
        img_names = os.listdir(subdir)
        for img_name in img_names:
            test_dataset.append([event, os.path.join(subdir, img_name)])
    num_images = len(test_dataset)

    _t = {'forward_pass': Timer(), 'misc': Timer()}

    # testing begin
    for i, (event, img_name) in enumerate(test_dataset):
        if i % 100 == 0:
            torch.cuda.empty_cache()

        # image_path = testset_folder + img_name
        img_raw = cv2.imread(img_name, cv2.IMREAD_COLOR)
        img = np.float32(img_raw)

        # testing scale
        target_size = 480
        max_size = 2150
        im_shape = img.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        resize = float(target_size) / float(im_size_min)
        # prevent bigger axis from being more than max_size:
        if np.round(resize * im_size_max) > max_size:
            resize = float(max_size) / float(im_size_max)
        if args.origin_size:
            resize = 1

        if resize != 1:
            img = cv2.resize(img,
                             None,
                             None,
                             fx=resize,
                             fy=resize,
                             interpolation=cv2.INTER_LINEAR)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img = (img - 127.5) / 128.0
        # img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        _t['forward_pass'].tic()
        loc, conf, landms = net(img)  # forward pass
        _t['forward_pass'].toc()
        _t['misc'].tic()
        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data,
                              cfg['variance'])
        scale1 = torch.Tensor([
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2]
        ])
        scale1 = scale1.to(device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        # order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        # dets = dets[:args.keep_top_k, :]
        # landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)
        _t['misc'].toc()

        # --------------------------------------------------------------------
        # save_name = args.save_folder + img_name[:-4] + ".txt"
        save_name = os.path.join(
            args.save_folder, event,
            img_name.split('/')[-1].split('.')[0] + ".txt")
        dirname = os.path.dirname(save_name)
        if not os.path.isdir(dirname):
            os.makedirs(dirname)
        with open(save_name, "w") as fd:
            bboxs = dets
            file_name = os.path.basename(save_name)[:-4] + "\n"
            bboxs_num = str(len(bboxs)) + "\n"
            fd.write(file_name)
            fd.write(bboxs_num)
            for box in bboxs:
                x = int(box[0])
                y = int(box[1])
                w = int(box[2]) - int(box[0])
                h = int(box[3]) - int(box[1])
                confidence = str(box[4])
                line = str(x) + " " + str(y) + " " + str(w) + " " + str(
                    h) + " " + confidence + " \n"
                fd.write(line)

        print('im_detect: {:d}/{:d} forward_pass_time: {:.4f}s misc: {:.4f}s'.
              format(i + 1, num_images, _t['forward_pass'].average_time,
                     _t['misc'].average_time))

        # save image
        if args.save_image:
            for b in dets:
                if b[4] < args.vis_thres:
                    continue
                text = "{:.4f}".format(b[4])
                b = list(map(int, b))
                cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255),
                              2)
                cx = b[0]
                cy = b[1] + 12
                cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX,
                            0.5, (255, 255, 255))

                # landms
                cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
                cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
                cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
                cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
                cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
            # save image
            if not os.path.exists("./results/"):
                os.makedirs("./results/")
            name = "./results/" + str(i) + ".jpg"
            cv2.imwrite(name, img_raw)
Exemplo n.º 23
0
        inds = np.where(scores > 0.02)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        # order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, 0.4)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:keep_top_k, :]
        landms = landms[:keep_top_k, :]

        # take only dets with confident > 0.85
        face_conf_mask = dets[:, -1] > 0.85
        dets = dets[face_conf_mask, :]
        landms = landms[face_conf_mask, :]

        # added lanmarks
        if len(landms) == 0:
def detect_one_image(name, input_path, output_path):
    image_path = os.path.join(input_path, name)
    img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
    img = np.float32(img_raw)
    # testing scale
    target_size = long_side
    max_size = long_side
    im_shape = img.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    resize = float(target_size) / float(im_size_min)
    # prevent bigger axis from being more than max_size:
    if np.round(resize * im_size_max) > max_size:
        resize = float(max_size) / float(im_size_max)
    if origin_size:
        resize = 1
    if resize != 1:
        img = cv2.resize(img,
                         None,
                         None,
                         fx=resize,
                         fy=resize,
                         interpolation=cv2.INTER_LINEAR)
    im_height, im_width, _ = img.shape
    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)
    tic = time.time()
    loc, conf, landms = net(img)  # forward pass
    print('Inferece {} take: {:.4f}'.format(name, time.time() - tic))
    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()
    # ignore low scores
    inds = np.where(scores > confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]
    # keep top-K before NMS
    order = scores.argsort()[::-1][:top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]
    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, nms_threshold)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]
    # keep top-K faster NMS
    dets = dets[:keep_top_k, :]
    landms = landms[:keep_top_k, :]
    dets = np.concatenate((dets, landms), axis=1)
    # show image
    bbox_res = {}
    bbox_res[name] = []
    if save_image:
        for b in dets:
            if b[4] < vis_thres:
                continue
            text = "{:.4f}".format(b[4])
            b = list(map(int, b))
            x, y, x_plus_w, y_plus_h = b[0], b[1], b[2], b[3]
            bbox_res[name].append({
                'x': x,
                'y': y,
                'w': x_plus_w - x,
                'h': y_plus_h - y
            })
            # Blur face
            # sub_face = img_raw[y:y_plus_h, x:x_plus_w]
            # sub_face = cv2.GaussianBlur(sub_face, (81, 81), 75)
            # img_raw[y:y_plus_h, x:x_plus_w] = sub_face
            cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)

    # save image
        out_name = os.path.join(output_path, name)
        cv2.imwrite(out_name, img_raw)
    return bbox_res
Exemplo n.º 25
0
    def detect_faces(self, img_raw):

        img = np.float32(img_raw)

        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        if self.on_gpu:
            img = img.to(self.device)
            scale = scale.to(self.device)
        # graph = 0
        tic = time.time()
        loc, conf, landms = self.detector(img)  # forward pass
        print('net forward time: {:.4f}'.format(time.time() - tic))

        priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        if self.on_gpu:
            priors = priors.to(self.device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
        boxes = boxes * scale / self.resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data,
                              self.cfg['variance'])
        scale1 = torch.Tensor([
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2]
        ])
        if self.on_gpu:
            scale1 = scale1.to(self.device)
        landms = landms * scale1 / self.resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > self.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:self.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, self.nms_threshold)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:self.keep_top_k, :]
        landms = landms[:self.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)

        faces = []
        for f in dets:
            # fr: top, right, bottom, left
            # retina: left, right, bottom, top
            faces.append((int(f[1]), int(f[2]), int(f[3]), int(f[0])))

        return faces
Exemplo n.º 26
0
def run(args):
    # net and load
    cfg = cfg_mnet
    net = RetinaFace(cfg=cfg, phase='test')
    new_state_dict = load_normal(args.trained_model)
    net.load_state_dict(new_state_dict)
    print('Finished loading model!')
    print(net)

    torch.set_grad_enabled(False)

    device = torch.device("cpu" if args.cpu else "cuda")
    net = net.to(device)
    input = torch.randn(1, 3, 270, 480).cuda()
    flops, params = profile(net, inputs=(input, ))
    print('flops:', flops, 'params:', params)

    # testing dataset
    with open(args.test_list_dir, 'r') as fr:
        test_dataset = fr.read().split()
    test_dataset.sort()

    _t = {'forward_pass': Timer(), 'misc': Timer()}

    # testing begin
    if not os.path.isdir(args.save_folder):
        os.makedirs(args.save_folder)
    f_ = open(os.path.join(args.save_folder, 'vis_bbox.txt'), 'w')
    net.eval()
    for i, image_path in enumerate(test_dataset):
        #img_name = os.path.split(image_path)[-1]
        img_name = image_path[image_path.find('datasets') + 9:]
        img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
        # img_raw = cv2.resize(img_raw, None, fx=1./3, fy=1.0/3, interpolation=cv2.INTER_AREA)
        img = np.float32(img_raw)

        # testing scale
        target_size = 1600
        max_size = 2150
        im_shape = img.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        resize = float(target_size) / float(im_size_min)
        # prevent bigger axis from being more than max_size:
        if np.round(resize * im_size_max) > max_size:
            resize = float(max_size) / float(im_size_max)
        if args.origin_size:
            resize = 1

        if resize != 1:
            img = cv2.resize(img,
                             None,
                             None,
                             fx=resize,
                             fy=resize,
                             interpolation=cv2.INTER_LINEAR)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.to(device)
        scale = scale.to(device)

        _t['forward_pass'].tic()
        loc, conf, landms = net(img)  # forward pass
        _t['forward_pass'].toc()
        _t['misc'].tic()
        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.to(device)
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0), prior_data,
                              cfg['variance'])
        scale1 = torch.Tensor([
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2], img.shape[3], img.shape[2],
            img.shape[3], img.shape[2]
        ])
        scale1 = scale1.to(device)
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:args.keep_top_k, :]
        landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)
        _t['misc'].toc()

        # --------------------------------------------------------------------
        save_name = os.path.join(args.save_folder, 'txt',
                                 img_name)[:-4] + '.txt'
        dirname = os.path.dirname(save_name)
        if not os.path.isdir(dirname):
            os.makedirs(dirname)
        with open(save_name, "w") as fd:
            bboxs = dets
            file_name = os.path.basename(save_name)[:-4] + "\n"
            bboxs_num = str(len(bboxs)) + "\n"
            fd.write(file_name)
            fd.write(bboxs_num)
            for box in bboxs:
                x = int(box[0])
                y = int(box[1])
                w = int(box[2]) - int(box[0])
                h = int(box[3]) - int(box[1])
                confidence = str(box[4])
                line = str(x) + " " + str(y) + " " + str(w) + " " + str(
                    h) + " " + confidence + " \n"
                fd.write(line)

        print('im_detect: {:d}/{:d}'
              ' forward_pass_time: {:.4f}s'
              ' misc: {:.4f}s'
              ' img_shape:{:}'.format(i + 1, len(test_dataset),
                                      _t['forward_pass'].average_time,
                                      _t['misc'].average_time, img.shape))

        # save bbox-image
        line_write = save_image(dets,
                                args.vis_thres,
                                img_raw,
                                args.save_folder,
                                img_name,
                                save_all=args.save_image_all)
        f_.write(line_write)
        f_.flush()
    f_.close()
Exemplo n.º 27
0
def detect_face(net, img):

    img = np.float32(img_raw)
    # testing scale
    target_size = args.long_side
    max_size = args.long_side
    im_shape = img.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    resize = float(target_size) / float(im_size_min)
    # prevent bigger axis from being more than max_size:
    if np.round(resize * im_size_max) > max_size:
        resize = float(max_size) / float(im_size_max)
    if args.origin_size:
        resize = 1

    if resize != 1:
        img = cv2.resize(img,
                         None,
                         None,
                         fx=resize,
                         fy=resize,
                         interpolation=cv2.INTER_LINEAR)
        # print("\nimg shape resize: ", img.shape)
    im_height, im_width, _ = img.shape

    scale = torch.Tensor(
        [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    scale = scale.to(device)

    tic = time.time()
    loc, conf, landms = net(img)  # forward pass
    # print('net forward time: {:.4f}'.format(time.time() - tic))

    tic = time.time()

    priorbox = PriorBox(cfg, image_size=(im_height, im_width))
    priors = priorbox.forward()
    priors = priors.to(device)
    prior_data = priors.data
    boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
    boxes = boxes * scale / resize
    boxes = boxes.cpu().numpy()
    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
    landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
    scale1 = torch.Tensor([
        img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
        img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]
    ])
    scale1 = scale1.to(device)
    landms = landms * scale1 / resize
    landms = landms.cpu().numpy()

    # ignore low scores
    inds = np.where(scores > args.confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, args.nms_threshold)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    dets = dets[:args.keep_top_k, :]
    landms = landms[:args.keep_top_k, :]

    dets = np.concatenate((dets, landms), axis=1)
    # print('post processing time: {:.4f}'.format(time.time() - tic))
    return dets
Exemplo n.º 28
0
def val_to_text():
    txt_origin_size = True
    txt_confidence_threshold = 0.02
    txt_nms_threshold = 0.4
    txt_save_folder = args.save_folder + 'widerface_txt/'
    testset_list = 'data/widerface/val/wider_val.txt'
    testset_folder = 'data/widerface/val/images/'
    with open(testset_list, 'r') as fr:
        test_dataset = fr.read().split()

    # testing begin
    for i, img_name in enumerate(tqdm(test_dataset)):
        image_path = testset_folder + img_name
        img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
        img = np.float32(img_raw)

        # testing scale
        target_size = 1600
        max_size = 2150
        im_shape = img.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        resize = float(target_size) / float(im_size_min)
        # prevent bigger axis from being more than max_size:
        if np.round(resize * im_size_max) > max_size:
            resize = float(max_size) / float(im_size_max)
        if txt_origin_size:
            resize = 1

        if resize != 1:
            img = cv2.resize(img, None, None, fx=resize,
                             fy=resize, interpolation=cv2.INTER_LINEAR)
        im_height, im_width, _ = img.shape
        scale = torch.Tensor(
            [img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
        img -= (104, 117, 123)
        img = img.transpose(2, 0, 1)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.cuda()
        scale = scale.cuda()

        net.phase = 'test'
        loc, conf, landms = net(img)  # forward pass
        net.phase = 'train'

        priorbox = PriorBox(cfg, image_size=(im_height, im_width))
        priors = priorbox.forward()
        priors = priors.cuda()
        prior_data = priors.data
        boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
        boxes = boxes * scale / resize
        boxes = boxes.cpu().numpy()
        scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
        landms = decode_landm(landms.data.squeeze(0),
                              prior_data, cfg['variance'])
        scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2], img.shape[3], img.shape[2],
                               img.shape[3], img.shape[2]])
        scale1 = scale1.cuda()
        landms = landms * scale1 / resize
        landms = landms.cpu().numpy()

        # ignore low scores
        inds = np.where(scores > txt_confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1]
        # order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
            np.float32, copy=False)
        keep = py_cpu_nms(dets, txt_nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        # dets = dets[:args.keep_top_k, :]
        # landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)

        # --------------------------------------------------------------------
        save_name = txt_save_folder + img_name[:-4] + ".txt"
        dirname = os.path.dirname(save_name)
        if not os.path.isdir(dirname):
            os.makedirs(dirname)
        with open(save_name, "w") as fd:
            bboxs = dets
            file_name = os.path.basename(save_name)[:-4] + "\n"
            bboxs_num = str(len(bboxs)) + "\n"
            fd.write(file_name)
            fd.write(bboxs_num)
            for box in bboxs:
                x = int(box[0])
                y = int(box[1])
                w = int(box[2]) - int(box[0])
                h = int(box[3]) - int(box[1])
                confidence = str(box[4])
                line = str(x) + " " + str(y) + " " + str(w) + \
                    " " + str(h) + " " + confidence + " \n"
                fd.write(line)
    return txt_save_folder
Exemplo n.º 29
0
        # ignore low scores
        inds = np.where(scores > args.confidence_threshold)[0]
        boxes = boxes[inds]
        landms = landms[inds]
        scores = scores[inds]

        # keep top-K before NMS
        order = scores.argsort()[::-1][:args.top_k]
        boxes = boxes[order]
        landms = landms[order]
        scores = scores[order]

        # do NMS
        dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                                copy=False)
        keep = py_cpu_nms(dets, args.nms_threshold)
        # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
        dets = dets[keep, :]
        landms = landms[keep]

        # keep top-K faster NMS
        dets = dets[:args.keep_top_k, :]
        landms = landms[:args.keep_top_k, :]

        dets = np.concatenate((dets, landms), axis=1)

        # show image
        if args.save_image:
            for b in dets:
                if b[4] < args.vis_thres:
                    continue
Exemplo n.º 30
0
    inds = np.where(scores > confidence_threshold)[0]
    boxes = boxes[inds]
    landms = landms[inds]
    scores = scores[inds]

    # keep top-K before NMS
    order = scores.argsort()[::-1]
    # order = scores.argsort()[::-1][:args.top_k]
    boxes = boxes[order]
    landms = landms[order]
    scores = scores[order]

    # do NMS
    dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32,
                                                            copy=False)
    keep = py_cpu_nms(dets, nms_threshold)
    # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
    dets = dets[keep, :]
    landms = landms[keep]

    # keep top-K faster NMS
    # dets = dets[:args.keep_top_k, :]
    # landms = landms[:args.keep_top_k, :]

    dets = np.concatenate((dets, landms), axis=1).astype(np.float32)

    _t['misc'].toc()

    # # --------------------------------------------------------------------
    # save_name = args.save_folder + img_name[:-4] + ".txt"
    # dirname = os.path.dirname(save_name)