Exemplo n.º 1
0
def test_adaptive_order():
    """
    Проверяем сходимость
    Q: почему наклон линии (число в скобках) соответствует порядку метода?
    """
    t0, t1 = 0, 2 * np.pi
    y0 = np.array([1., 1.])
    ode = Harmonic(y0, 1, 1)

    methods = (
        (ExplicitEulerMethod(), AdaptType.RUNGE),
        (RungeKuttaMethod(coeffs.rk4_coeffs), AdaptType.RUNGE),
        (RungeKuttaMethod(coeffs.dopri_coeffs), AdaptType.RUNGE),
        (EmbeddedRungeKuttaMethod(coeffs.dopri_coeffs), AdaptType.EMBEDDED),
    )
    tols = 10.**-np.arange(3, 9)

    plt.figure(figsize=(9, 6))
    for i, (method, adapt_type) in enumerate(methods):
        print(method.name)
        fcs = []
        errs = []
        for tol in tols:
            ode.clear_call_counter()
            ts, ys = adaptive_step_integration(method=method,
                                               ode=ode,
                                               y_start=y0,
                                               t_span=(t0, t1),
                                               adapt_type=adapt_type,
                                               atol=tol,
                                               rtol=tol * 1e3)
            err = np.linalg.norm(ys[-1] - ode[t1])
            fc = ode.get_call_counter()
            print(
                f'{method.name} with {adapt_type.name}: {fc} RHS calls, err = {err:.5f}'
            )
            errs.append(err)
            fcs.append(fc)

        x = np.log10(fcs)
        y = -np.log10(errs)
        k, b = np.polyfit(x, y, 1)
        plt.plot(x, k * x + b, 'k:')
        plt.plot(x, y, 'p', label=f'{method.name} {adapt_type} ({k:.2f})')

    plt.title('test_adaptive_order: check RHS evals')
    plt.xlabel('log10(function_calls)')
    plt.ylabel('accuracy')
    plt.legend()

    plt.show()
Exemplo n.º 2
0
def test_adaptive_order():
    """
    test adaptive algorithms convergence
    """
    t0, t1 = 0, 2 * np.pi
    y0 = np.array([1., 1.])
    f = Harmonic(y0, 1, 1)

    methods = (
        (ExplicitEulerMethod(), AdaptType.RUNGE),
        (RungeKuttaMethod(coeffs=collection.rk4_coeffs), AdaptType.RUNGE),
        (EmbeddedRungeKuttaMethod(coeffs=collection.dopri_coeffs),
         AdaptType.EMBEDDED),
    )
    tols = 10.**-np.arange(3, 9)

    plt.figure()
    for i, (method, adapt_type) in enumerate(methods):
        print(method.name)
        fcs = []
        errs = []
        for tol in tols:
            f.clear_call_counter()
            ts, ys = adaptive_step_integration(method=method,
                                               func=f,
                                               y_start=y0,
                                               t_span=(t0, t1),
                                               adapt_type=adapt_type,
                                               atol=tol,
                                               rtol=tol * 1e3)
            err = np.linalg.norm(ys[-1] - f[t1])
            fc = f.get_call_counter()
            print(f'{method.name}: {fc} RHS calls, err = {err:.5f}')
            errs.append(err)
            fcs.append(fc)

        x = np.log10(fcs)
        y = -np.log10(errs)
        k, b = np.polyfit(x, y, 1)
        plt.plot(x, k * x + b, 'k:')
        plt.plot(x, y, 'p', label=f'{method.name} ({k:.2f})')
    plt.suptitle('test_adaptive_order: check RHS evals')
    plt.xlabel('log10(function_calls)')
    plt.ylabel('accuracy')
    plt.legend()
    plt.show()
Exemplo n.º 3
0
def test_multi_step():
    """
    Проверяем методы Адамса
    Q: сравните правые графики для обоих случаев и объясните разницу
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi
    dt = 0.1

    f = Harmonic(y0, 1, 1)
    ts = np.arange(t0, t1 + dt, dt)
    exact = f[ts].T

    for one_step_method in [
            RungeKuttaMethod(collection.rk4_coeffs),
            ExplicitEulerMethod(),
    ]:
        fig, (ax1, ax2) = plt.subplots(1, 2)

        ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')
        for p, c in adams_coeffs.items():
            f.clear_call_counter()
            t_adams, y_adams = adams(f,
                                     y0,
                                     ts,
                                     c,
                                     one_step_method=one_step_method)
            n_calls = f.get_call_counter()
            print(
                f'{p}-order multi-step with one-step {one_step_method.name}: {n_calls} function calls'
            )

            err = get_accuracy(exact, y_adams)

            label = f"Adams's order {p}"
            ax1.plot(t_adams, [y[0] for y in y_adams], '.--', label=label)
            ax2.plot(t_adams, err, '.--', label=label)

        ax1.legend(), ax1.set_title('y(t)')
        ax2.legend(), ax2.set_title('accuracy')
        fig.suptitle(
            f'test_multi_step\none step method: {one_step_method.name}')
        fig.tight_layout()

    plt.show()
Exemplo n.º 4
0
def test_one_step():
    """
    Проверяем методы Эйлера и Рунге-Кутты
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi

    ode = Harmonic(y0, 1, 1)

    for dt in [0.1, 0.01]:
        ts = np.arange(t0, t1 + dt, dt)

        exact = ode[ts].T
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
        ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')

        colors = 'rgbcmyk'
        for i, method in enumerate([
                ExplicitEulerMethod(),
                ImplicitEulerMethod(),
                RungeKuttaMethod(collection.rk4_coeffs),
                RungeKuttaMethod(collection.dopri_coeffs),
        ]):
            ode.clear_call_counter()
            _, y = fix_step_integration(method, ode, y0, ts)
            n_calls = ode.get_call_counter()
            print(
                f'One-step {method.name}: {len(y)-1} steps, {n_calls} function calls'
            )

            ax1.plot(ts, [_y[0] for _y in y],
                     f'{colors[i]}.--',
                     label=method.name)
            ax2.plot(ts,
                     get_accuracy(exact, y),
                     f'{colors[i]}.--',
                     label=method.name)

        ax1.legend(), ax1.set_title('y(t)')
        ax2.legend(), ax2.set_title('accuracy')

        fig.suptitle(f'test_one_step, dt={dt}')
        fig.tight_layout()

    plt.show()
Exemplo n.º 5
0
def test_multi_step():
    """
    test Adams method
    Q: compare the right plot for both cases and explain the difference
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = 1.
    dt = 0.1

    f = Harmonic(y0, 1, 1)
    ts = np.arange(t0, t1 + dt, dt)
    exact = f[ts].T

    for one_step_method in [
            RungeKuttaMethod(collection.rk4_coeffs),
            ExplicitEulerMethod(),
    ]:
        _, (ax1, ax2) = plt.subplots(1, 2)

        ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')
        for p, c in adams_coeffs.items():
            f.clear_call_counter()
            t_adams, y_adams = adams(f,
                                     y0,
                                     ts,
                                     c,
                                     one_step_method=one_step_method)
            n_calls = f.get_call_counter()
            print(
                f'{p}-order multi-step with one-step {one_step_method.name}: {n_calls} function calls'
            )

            err = get_accuracy(exact, y_adams)

            label = f"Adams's order {p}"
            ax1.plot(t_adams, [y[0] for y in y_adams], '.--', label=label)
            ax2.plot(t_adams, err, '.--', label=label)

        ax1.set_xlabel('t'), ax1.set_ylabel('y'), ax1.legend()
        ax2.set_xlabel('t'), ax2.set_ylabel('accuracy'), ax2.legend()
        plt.suptitle(
            f'test_multi_step\none step method: {one_step_method.name}')
    plt.show()
Exemplo n.º 6
0
def test_one_step():
    """
    test Euler and RK methods
    """
    y0 = np.array([0., 1.])
    t0 = 0
    t1 = np.pi / 2
    dt = 0.1

    f = Harmonic(y0, 1, 1)
    ts = np.arange(t0, t1 + dt, dt)

    exact = f[ts].T
    _, (ax1, ax2) = plt.subplots(1, 2)
    ax1.plot(ts, [e[0] for e in exact], 'k', label='Exact')

    colors = 'rgbcmyk'
    for i, method in enumerate([
            ExplicitEulerMethod(),
            ImplicitEulerMethod(),
            RungeKuttaMethod(collection.rk4_coeffs),
            RungeKuttaMethod(collection.dopri_coeffs),
    ]):
        f.clear_call_counter()
        _, y = fix_step_integration(method, f, y0, ts)
        n_calls = f.get_call_counter()
        print(
            f'One-step {method.name}: {len(y)-1} steps, {n_calls} function calls'
        )

        ax1.plot(ts, [_y[0] for _y in y], f'{colors[i]}.--', label=method.name)
        ax2.plot(ts,
                 get_accuracy(exact, y),
                 f'{colors[i]}.--',
                 label=method.name)

    ax1.set_xlabel('t'), ax1.set_ylabel('y'), ax1.legend()
    ax2.set_xlabel('t'), ax2.set_ylabel('accuracy'), ax2.legend()
    plt.suptitle('test_one_step')
    plt.show()