def __init__(self, input_file, features, n_neighbors, all_labels=False):
        "Initialization"
        data = ply2dict(input_file)
        try:
            all_features = ["x", "y", "z"] + features
            X = np.vstack([data[f] for f in all_features]).T
        except KeyError:
            print(f"ERROR: Input features {features} not recognized")
            return
        labels = data["labels"]

        self.index = np.arange(X.shape[0])
        if not all_labels:
            X, labels = self.filter_labels(X, labels)

        self.X = torch.from_numpy(X)
        self.labels = torch.from_numpy(labels)
        self.n_samples = self.labels.shape[0]
        tree = KDTree(self.X[:, :3])
        _, self.neighbors_idx = tree.query(
            self.X[:, :3], k=n_neighbors, sort_results=True
        )
Exemplo n.º 2
0
    for path_ply in args.files:
        path_ply = os.path.join(args.prefix_path, path_ply)
        print(f"\nProcessing file: {path_ply}")
        print("* Preparing dataloader..", end=" ", flush=True)
        dataset = AerialPointDataset(path_ply, **config["data"])
        loader = DataLoader(
            dataset=dataset,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            shuffle=False,
        )
        print("DONE")

        # Create and fill point cloud field
        data = ply2dict(path_ply)
        true_labels = data["labels"]
        names = NAMES_9

        # in the 4-labels case
        if not config["data"]["all_labels"]:
            true_labels = convert_labels(true_labels).astype(np.int32)
            names = NAMES_4

        n = len(true_labels)
        predictions = -np.ones(n, dtype=np.int32)
        raw_predictions = predict(loader, len(dataset)).astype(np.int32)
        predictions[dataset.index] = raw_predictions
        errors = predictions != true_labels
        data["predictions"] = predictions
        data["errors"] = errors.astype(np.uint8)
def compute_features(path_ply, steps_params):
    filename = os.path.split(path_ply)[-1]

    data = ply2dict(path_ply)
    coords = np.vstack((data["x"], data["y"], data["z"])).T

    grid_ground_3d = None

    for (step, params) in steps_params.items():
        if step == "descriptors":
            print("Computing local descriptors..")
            all_descriptors = descriptors.compute_descriptors(coords, **params)
            data.update(all_descriptors)

        if step == "region_growing":
            print("\nComputing regions..")
            normals = np.vstack((data["nx"], data["ny"], data["nz"])).T
            params_copy = params.copy()

            descriptor_selected = params_copy.pop("descriptor")
            print("* descriptor selected : "
                  f"{'min' if params['minimize'] else 'max'} "
                  f"{descriptor_selected}")
            print(f"* thresholds : {params['thresholds']}")
            print(f"* radius : {params['radius']}")
            try:
                descriptor_vals = data[descriptor_selected]
                region_labels = region_growing.multi_region_growing(
                    coords, normals, descriptor_vals, **params_copy)

                data["regions"] = region_labels
            except KeyError:
                print(
                    f"Descriptor '{descriptor_selected}' has not been computed"
                    ", run 'python3 compute_features.py --descriptors "
                    f"{descriptor_selected}'")
                sys.exit(-1)

        if step == "ground_extraction":
            print("\nExtracting ground from regions..")
            region_labels = data["regions"]
            ground_mask = ground_extraction.stitch_regions(
                coords, region_labels, **params)

            ground_only = {
                field: data[field][ground_mask]
                for field in list(data.keys())
            }

            data["ground"] = ground_mask.astype(np.uint8)

            os.makedirs(PATH_GROUND_ONLY, exist_ok=True)
            path_ground = os.path.join(PATH_GROUND_ONLY, filename)
            if dict2ply(ground_only, path_ground):
                print(f"* PLY ground file successfully saved to {path_ground}")

        if step == "ground_rasterization":
            print("\nComputing ground rasterization..")
            ground_mask = data["ground"].astype(bool)
            grid_ground_3d = ground_extraction.rasterize_ground(
                coords, ground_mask, **params)

            ground_rasterized = {
                "x": grid_ground_3d[:, 0],
                "y": grid_ground_3d[:, 1],
                "z": grid_ground_3d[:, 2],
                "ground_altitude": grid_ground_3d[:, 2],
            }

            path_rasterized = os.path.join(PATH_GROUND_RASTERIZED, filename)
            if dict2ply(ground_rasterized, path_rasterized):
                print("* PLY ground rasterized file successfully saved to "
                      f"{path_rasterized}")

        if step == "height_above_ground":
            print("\nComputing height above ground..")
            if grid_ground_3d is None:
                path_rasterized = os.path.join(PATH_GROUND_RASTERIZED,
                                               filename)
                print(f"* Loading rasterized ground : {path_rasterized}")
                ground_rasterized = ply2dict(path_rasterized)
                grid_ground_3d = np.vstack((
                    ground_rasterized["x"],
                    ground_rasterized["y"],
                    ground_rasterized["z"],
                )).T

            ground_mask = data["ground"].astype(bool)
            heights = ground_extraction.height_above_ground(
                coords, ground_mask, grid_ground_3d)
            data["height_above_ground"] = heights
            print("DONE")

    # saving data
    path_output = os.path.join(PATH_FEATURES, filename)
    if dict2ply(data, path_output):
        print(f"\nPLY features file successfully saved to {path_output}")
        steps["height_above_ground"] = {}

    if args.rasterize_ground or args.full_pipeline:
        steps["rasterize_ground"] = {
            "step": args.rasterize_step,
        }
        os.makedirs(PATH_GROUND_RASTERIZED, exist_ok=True)

    if len(steps.keys()) == 0:
        print("ERROR : No steps to compute")
        sys.exit(-1)

    for file in args.files:
        print(f"\nComputing features of file {file}")

        data = ply2dict(file)
        data, ground_only, ground_rasterized = compute_features(data, steps)

        # save PLY files
        filename = os.path.split(file)[-1]
        f_data = os.path.join(PATH_FEATURES, filename)
        if dict2ply(data, f_data):
            print(f"PLY file successfully saved to {f_data}")

        if ground_only:
            f_ground_only = os.path.join(PATH_GROUND_ONLY, filename)
            if dict2ply(ground_only, f_ground_only):
                print(f"PLY ground file successfully saved to {f_ground_only}")

        if ground_rasterized:
            f_ground_rasterized = os.path.join(PATH_GROUND_RASTERIZED,