Exemplo n.º 1
0
def load_data(args):
    # init transforms
    transform = {
        'train': get_transform(args.dataset, augment=True),
        'eval': get_transform(args.dataset, augment=False)
    }

    train_data = get_dataset(args.dataset, train=True, transform=transform['train'], datasets_path=args.data)
    valid_data = get_dataset(args.dataset, train=False, transform=transform['eval'], datasets_path=args.data)

    num_train = len(train_data)
    indices = list(range(num_train))
    # split = int(floor(args.train_portion * num_train))

    train_queue = DataLoader(train_data, batch_size=args.batch_size, sampler=SubsetRandomSampler(indices),
                             pin_memory=True, num_workers=args.workers)

    valid_queue = DataLoader(valid_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)

    # init create DataLoader function
    createDataLoader = lambda data, _indices: DataLoader(data, batch_size=args.batch_size, sampler=SubsetRandomSampler(_indices),
                                                         pin_memory=True, num_workers=args.workers)
    # build search_queue as list of DataLoaders
    create_search_queue = lambda: splitDataToParts(train_data, indices, args.alphas_data_parts, createDataLoader)

    return train_queue, valid_queue, create_search_queue
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):
        imgL_o = Image.open(test_left_img[inx]).convert('RGB')
        imgR_o = Image.open(test_right_img[inx]).convert('RGB')
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()

        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])
        # pad to (384, 1248)
        top_pad = 384 - imgL.shape[2]
        left_pad = 1248 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        start_time = time.time()
        pred_seg = val(imgL, imgR)  #(384,1248),(1,21,384,1248)
        print('time = %.2f' % (time.time() - start_time))
        #FCN OF SEGMETATION
        pred_seg = pred_seg[:, :, top_pad:, :-left_pad]
        N, _, h, w = pred_seg.shape  # 4,12,192,704,numpy
        pred_segmap = pred_seg.transpose(0, 2, 3, 1).reshape(
            -1, args.n_class).argmax(axis=1).reshape(N, h, w)
        img = drawseg.direct_render(pred_segmap, args.n_class, imgL_o)
        skimage.io.imsave(args.saveseg + (test_left_img[inx].split('/')[-1]),
                          img[0])
Exemplo n.º 3
0
def main():
    processed = preprocess.get_transform(augment=False)
    if not os.path.isdir(args.output):
        os.mkdir(args.output)
    for inx in range(len(dataloader)):
        imgL_o, imgR_o, disp, sparse_disp_L = dataloader[inx]
        print('sparse depth:', len(np.nonzero(sparse_disp_L)[0]))
        if args.datatype == 'kitti_object':
            frame_id = dataloader.frame_ids[inx]
            sparse_disp_L = disp  # disp is still sparse in kitti_object
        else:
            frame_id = str(inx)
        imgL = imgL_o.numpy()
        imgR = imgR_o.numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])
        sparse_disp_L = np.reshape(
            sparse_disp_L, [1, sparse_disp_L.shape[0], sparse_disp_L.shape[1]])
        #print('mean of gt:', np.mean(disp))

        start_time = time.time()
        pred_disp = test(imgL, imgR, sparse_disp_L, refine=True)
        print('%s: time = %.2f' % (frame_id, time.time() - start_time))
        print(pred_disp.shape)
        # TODO: crop output to original size
        np.save(os.path.join(args.output, frame_id + '.npy'), pred_disp)
Exemplo n.º 4
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):

        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        top_pad = 384 - imgL.shape[2]
        left_pad = 1248 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = 384 - imgL_o.shape[0]
        left_pad = 1248 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        skimage.io.imsave(test_left_img[inx].split('/')[-1],
                          (img * 256).astype('uint16'))
    def __init__(self, left, right, left_disparity, right_disparity=None, left_entropy=None, is_validation=False,
                 loader=default_loader, dploader=disparity_loader, rand_scale=[0.225,0.6], rand_bright=[0.5,2.],
                 order=0, entropy_threshold=None, testres=None, use_pseudoGT=False, no_aug=False):
        self.left = left
        self.right = right
        self.disp_L = left_disparity
        self.disp_R = right_disparity
        self.loader = loader
        self.dploader = dploader
        self.rand_scale = rand_scale
        self.rand_bright = rand_bright
        self.order = order
        self.left_entropy = left_entropy
        self.entropy_threshold = entropy_threshold
        self.is_validation = is_validation
        self.processed = get_transform()
        self.testres = testres
        self.no_aug = no_aug
        self.use_pseudoGT = use_pseudoGT

        if self.is_validation and self.testres is None:
            raise ValueError("testres argument is required for validation")

        if self.use_pseudoGT:
            if entropy_threshold is None or left_entropy is None:
                raise ValueError("when using pseudo GT, entorpy_threshold and left_entropy must be provided")
Exemplo n.º 6
0
    def __init__(self, params):
        self.args = params
        self.args.cuda = not self.args.no_cuda and torch.cuda.is_available()

        torch.manual_seed(self.args.seed)
        if self.args.cuda:
            torch.cuda.manual_seed(self.args.seed)
        
        # load model
        if self.args.model == 'stackhourglass':
            self.model = stackhourglass(self.args.maxdisp)
        elif self.args.model == 'basic':
            self.model = basic(self.args.maxdisp)
        else:
            print('no model')

        self.model = nn.DataParallel(self.model, device_ids=[0])
        self.model.cuda()

        if self.args.loadmodel is not None:
            state_dict = torch.load(self.args.loadmodel)
            self.model.load_state_dict(state_dict['state_dict'])

        print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in self.model.parameters()])))

        # process operations
        self.processed = preprocess.get_transform(augment=False)
Exemplo n.º 7
0
def main():
    processed = preprocess.get_transform(augment=False)
    if args.isgray:
        imgL_o = cv2.cvtColor(cv2.imread(args.leftimg, 0), cv2.COLOR_GRAY2RGB)
        imgR_o = cv2.cvtColor(cv2.imread(args.rightimg, 0), cv2.COLOR_GRAY2RGB)
    else:
        imgL_o = (skimage.io.imread(args.leftimg).astype('float32'))
        imgR_o = (skimage.io.imread(args.rightimg).astype('float32'))

    imgL = processed(imgL_o).numpy()
    imgR = processed(imgR_o).numpy()
    imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
    imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

    # pad to width and hight to 16 times
    if imgL.shape[2] % 16 != 0:
        times = imgL.shape[2] // 16
        top_pad = (times + 1) * 16 - imgL.shape[2]
    else:
        top_pad = 0
    if imgL.shape[3] % 16 != 0:
        times = imgL.shape[3] // 16
        left_pad = (times + 1) * 16 - imgL.shape[3]
    else:
        left_pad = 0
    imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                      mode='constant',
                      constant_values=0)  #每行前增加了top_pad行,每列前增加了left_pad列
    imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                      mode='constant',
                      constant_values=0)
Exemplo n.º 8
0
def main():

    processed = preprocess.get_transform(augment=False)  #normalization
    t = 0
    for inx in range(len(test_left_img)):

        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))

        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]]) 
        imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])

        top_pad = 384-imgL.shape[2]
        right_pad = 1248-imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0,0),(0,0),(top_pad,0), (0,right_pad)), mode='constant', constant_values=0)
        imgR = np.lib.pad(imgR, ((0,0),(0,0),(top_pad,0), (0,right_pad)), mode='constant', constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL,imgR)
        t += time.time() - start_time
        print('time = %.2f' %(time.time() - start_time))

        top_pad = 384-imgL_o.shape[0]
        right_pad = 1248-imgL_o.shape[1]

        img = pred_disp[top_pad : , : -right_pad]
        skimage.io.imsave('./disp_image_' + str(args.KITTI) + '/' + test_left_img[inx].split('/')[-1], (img*256).astype('uint16')) #第一个参数表示保存的路径和名称,第二个参数表示需要保存的数组标量
        # skimage.io.imsave('./disp_image_' + str(args.KITTI) + '/' + test_left_img[inx].split('/')[-1], (img).astype('uint8')) #第一个参数表示保存的路径和名称,第二个参数表示需要保存的数组标量
    mean_time = t/(len(test_left_img))
    print(mean_time)
Exemplo n.º 9
0
    def __getitem__(self, index):

        img_left = img_read(self.left_imgs[index])
        img_right = img_read(self.right_imgs[index])
        file_name = os.path.basename(self.left_imgs[index])
        w, h = img_left.size

        processed = preprocess.get_transform(augment=False)
        img_left = processed(img_left).numpy()
        img_right = processed(img_right).numpy()

        img_left = np.reshape(img_left, [1, 3, h, w])
        img_right = np.reshape(img_right, [1, 3, h, w])

        pad_w = 32 * (math.floor(w / 32) + 1)
        pad_h = 32 * (math.floor(h / 32) + 1)

        top_pad = (int)(pad_h - h)
        left_pad = (int)(pad_w - w)

        img_left = np.lib.pad(img_left,
                              ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                              mode='constant',
                              constant_values=0)
        img_right = np.lib.pad(img_right,
                               ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                               mode='constant',
                               constant_values=0)

        return top_pad, left_pad, img_left, img_right, file_name
Exemplo n.º 10
0
    def __getitem__(self, index):
        left  = self.left[index]
        right = self.right[index]
        disp_L= self.disp_L[index]

        left_img = self.loader(left)
        right_img = self.loader(right)
        dataL = self.dploader(disp_L)


        if self.training:
            w, h = left_img.size
            th, tw = 256, 512
            
            x1 = random.randint(0, w - tw)
            y1 = random.randint(0, h - th)
            
            left_img  = left_img.crop((x1, y1, x1 + tw, y1 + th))#(左,上,右,下)
            right_img = right_img.crop((x1, y1, x1 + tw, y1 + th))
            
            dataL = np.ascontiguousarray(dataL,dtype=np.float32)/256
            dataL = dataL[y1:y1 + th, x1:x1 + tw]
            
            processed = preprocess.get_transform(augment=False)
            
            left_img  = processed(left_img)
            right_img = processed(right_img)
            
            return left_img, right_img, dataL
        else:
            w, h = left_img.size
            
            left_img  = left_img.crop((w-1232, h-368, w, h))
            right_img = right_img.crop((w-1232, h-368, w, h))
            
            w1, h1 = left_img.size
            
            dataL = dataL.crop((w-1232, h-368, w, h))
            dataL = np.ascontiguousarray(dataL,dtype=np.float32)/256
            #dataL = dataL[h-368:h, w-1232:w]
            
            processed = preprocess.get_transform(augment=False)
            
            left_img  = processed(left_img)
            right_img = processed(right_img)
            
            return left_img, right_img, dataL
Exemplo n.º 11
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):

        # imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        # imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        imgL_o = np.array(default_loader(test_left_img[inx]))
        imgR_o = np.array(default_loader(test_right_img[inx]))
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        top_pad = 512 - imgL.shape[2]
        # top_pad = 384-imgL.shape[2]
        # left_pad = 1248-imgL.shape[3]
        # imgL = np.lib.pad(imgL,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
        # imgR = np.lib.pad(imgR,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, 0)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, 0)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        with torch.no_grad():
            pred_disp, pred_R_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = 512 - imgL_o.shape[0]
        # top_pad   = 384-imgL_o.shape[0]
        # left_pad  = 1248-imgL_o.shape[1]
        disparity_dir = '/home/yotamg/data/sintel_depth/training/disparities_viz/'
        # file_splits = test_left_img[inx].split('/')[-1].split("_frame_")
        # a = plt.imread(os.path.join(disparity_dir, file_splits[0],'frame_' + file_splits[1]))
        img = pred_disp[top_pad:, :]
        imgR = pred_R_disp[top_pad:, :]
        img = 1 / img
        imgR = 1 / imgR
        # plt.figure(1)
        # plt.subplot(1,2,1)
        # plt.imshow(img)
        # plt.subplot(1,2,2)
        # plt.imshow(a)
        # plt.show()
        outdir = os.path.join('./outputs', args.outdir)
        if not os.path.isdir(outdir):
            os.makedirs(outdir)
        plt.imsave(os.path.join(outdir, test_left_img[inx].split('/')[-1]),
                   (img * 256).astype('uint16'),
                   cmap='jet')
        plt.imsave(os.path.join(outdir,
                                'R_' + test_left_img[inx].split('/')[-1]),
                   (imgR * 256).astype('uint16'),
                   cmap='jet')
Exemplo n.º 12
0
def main():
    processed = preprocess.get_transform(augment=False)
    is_result_dir = False

    for leftimg, rightimg in zip(leftimages_path, rightimages_path):
        print("Left Image : {}, Right Image : {}".format(leftimg, rightimg))
        if args.isgray:
            imgL_o = cv2.cvtColor(cv2.imread(leftimg, 0), cv2.COLOR_GRAY2RGB)
            imgR_o = cv2.cvtColor(cv2.imread(rightimg, 0), cv2.COLOR_GRAY2RGB)
        else:
            imgL_o = (skimage.io.imread(leftimg).astype('float32'))
            imgR_o = (skimage.io.imread(rightimg).astype('float32'))

        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to width and hight to 16 times
        if imgL.shape[2] % 16 != 0:
            times = imgL.shape[2] // 16
            top_pad = (times + 1) * 16 - imgL.shape[2]
        else:
            top_pad = 0
        if imgL.shape[3] % 16 != 0:
            times = imgL.shape[3] // 16
            left_pad = (times + 1) * 16 - imgL.shape[3]
        else:
            left_pad = 0
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        # Generating the depth map here
        pred_disp = test(imgL, imgR)

        # Removing the padded pixels
        if top_pad != 0 or left_pad != 0:
            img = pred_disp[top_pad:, :-left_pad]
        else:
            img = pred_disp

        img = (img * 256).astype('uint16')

        imgname = leftimg.split('/')[-1].split('.')[0] + "_disparity.png"

        if not is_result_dir:
            os.makedirs(args.savedir, exist_ok=True)

        skimage.io.imsave(os.path.join(args.savedir, imgname), img)
Exemplo n.º 13
0
def main():
    processed = preprocess.get_transform(augment=False)
    for inx in range(len(test_left_img)):  #len(test_left_img)

        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))

        sizex = 640  #1024 # = 2048/6.4
        sizey = 384  #512 # = 1024/3.2
        logger.debug("Before resize {}:{}:{}".format(imgL_o.shape[0],
                                                     imgL_o.shape[1],
                                                     imgL_o.shape[2]))
        imgL_o = skimage.transform.resize(imgL_o, (sizey, sizex),
                                          anti_aliasing=True)
        imgR_o = skimage.transform.resize(imgR_o, (sizey, sizex),
                                          anti_aliasing=True)
        logger.debug("After resize {}:{}:{}".format(imgL_o.shape[0],
                                                    imgL_o.shape[1],
                                                    imgL_o.shape[2]))

        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()

        # crop image Cityscapes:
        # logger.debug("Before crope {}:{}:{}".format(imgL.shape[0], imgL.shape[1], imgL.shape[2]))
        # imgL = crop_center(imgL, sizex, sizey)
        # imgR = crop_center(imgR, sizex, sizey)
        # logger.debug("After crope {}:{}:{}".format(imgL.shape[0], imgL.shape[1], imgL.shape[2]))

        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        # Doan code nay dung cho bo KITTI voi kich thuoc anh nho hon (384, 1248)
        # phai them vao de dat duoc kich thuoc anh phu hop
        # top_pad = 384-imgL.shape[2]
        # left_pad = 1248-imgL.shape[3]
        # imgL = np.lib.pad(imgL,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
        # imgR = np.lib.pad(imgR,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        logger.info('time = {}'.format(time.time() - start_time))

        # top_pad   = 384-imgL_o.shape[0]
        # left_pad  = 1248-imgL_o.shape[1]
        # img = pred_disp[top_pad:,:-left_pad]

        img = pred_disp
        dispmap = "disparity/" + test_left_img[inx].split('/')[-1]
        skimage.io.imsave(dispmap, (img * 256).astype('uint16'))
        logger.info('disparity map was saved at {}'.format(dispmap))
Exemplo n.º 14
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):
        if args.colormode == 1:
            asgray = False
            imgL_o = (skimage.io.imread(test_left_img[inx],
                                        as_gray=asgray).astype('float32'))
            imgR_o = (skimage.io.imread(test_right_img[inx],
                                        as_gray=asgray).astype('float32'))
            imgL = processed(imgL_o).numpy()
            imgR = processed(imgR_o).numpy()
            imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
            imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])
        else:
            asgray = True
            imgL_o = (skimage.io.imread(test_left_img[inx],
                                        as_gray=asgray).astype('float32'))
            imgR_o = (skimage.io.imread(test_right_img[inx],
                                        as_gray=asgray).astype('float32'))
            imgL = np.reshape(imgL_o, [1, 1, imgL_o.shape[0], imgL_o.shape[1]])
            imgR = np.reshape(imgR_o, [1, 1, imgR_o.shape[0], imgR_o.shape[1]])

        # pad to (384, 1248)
        if args.KITTI == 'sf':
            top_pad = 576 - imgL.shape[2]
            left_pad = 960 - imgL.shape[3]
        else:
            top_pad = 384 - imgL.shape[2]
            left_pad = 1280 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        if args.KITTI == 'sf':
            top_pad = 576 - imgL_o.shape[2]
            left_pad = 960 - imgL_o.shape[3]
        else:
            top_pad = 384 - imgL_o.shape[0]
            left_pad = 1280 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        skimage.io.imsave(
            os.path.join(args.savepath, test_left_img[inx].split('/')[-1]),
            (img * 256).astype('uint16'))
Exemplo n.º 15
0
def main():
   processed = preprocess.get_transform(augment=False)
   min_disp = 80
   sample_frame_id = 365
   for inx in range(sample_frame_id,sample_frame_id+1):
   # for inx in range(3244):
       imgLfile = os.path.join(args.datapath, 'left/%07d.png' % (inx+1))
       imgRfile = os.path.join(args.datapath, 'right/%07d.png' % (inx+1))
       imgL_o = (skimage.io.imread(imgLfile).astype('float32'))
       imgR_o = (skimage.io.imread(imgRfile).astype('float32'))
       imgL_o = skimage.transform.resize(imgL_o, (384,1248), preserve_range=True)
       imgR_o = skimage.transform.resize(imgR_o, (384,1248), preserve_range=True)
       imgL_o = imgL_o[:,:-min_disp,:]
       imgR_o = imgR_o[:,min_disp:,:]
       imgL_o = skimage.transform.resize(imgL_o, (384,1248), preserve_range=True)
       imgR_o = skimage.transform.resize(imgR_o, (384,1248), preserve_range=True)
       plt.subplot(4,1,1)
       plt.imshow(imgL_o.astype('uint8'))
       plt.subplot(4,1,2)
       plt.imshow(imgR_o.astype('uint8'))
       imgL = processed(imgL_o).numpy()
       imgR = processed(imgR_o).numpy()
       imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]])
       imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])
       # print(imgL.shape)

       # pad to (384, 1248)
       # top_pad = 384-imgL.shape[2]
       # left_pad = 1248-imgL.shape[3]
       # imgL = np.lib.pad(imgL,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
       # imgR = np.lib.pad(imgR,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)

       start_time = time.time()
       pred_disp, pred_cost = test(imgL,imgR)
       print('time = %.2f' %(time.time() - start_time))
       print(pred_disp.max())
       print(pred_disp.min())
       # top_pad   = 384-imgL_o.shape[0]
       # left_pad  = 1248-imgL_o.shape[1]
       # img = pred_disp[top_pad:,:-left_pad]
       img = pred_disp
       plt.subplot(4,1,3)
       plt.imshow(img)
       plt.colorbar()
       plt.subplot(4,1,4)
       plt.plot(pred_cost[:,200,600].flatten())
       plt.show()
       skimage.io.imsave(os.path.join(args.outpath,'%07d.png'%(inx)),
                        (img*256).astype('uint16'))
Exemplo n.º 16
0
def main():
    processed = preprocess.get_transform(augment=False)
    if args.isgray.lower() == 'true':
        print('reading gray images')
        imgL_o = cv2.cvtColor(cv2.imread(args.leftimg, 0), cv2.COLOR_GRAY2RGB)
        imgR_o = cv2.cvtColor(cv2.imread(args.rightimg, 0), cv2.COLOR_GRAY2RGB)

    else:
        #imgL_o = (skimage.io.imread(args.leftimg).astype('float32'))
        #imgR_o = (skimage.io.imread(args.rightimg).astype('float32'))
        #updated by CCJ:
        imgL_o = Image.open(args.leftimg)
        #imgL_o = np.asarray(imgL_o)
        imgR_o = Image.open(args.rightimg)
        #imgR_o = np.asarray(imgR_o)

    imgL = processed(imgL_o).numpy()
    imgR = processed(imgR_o).numpy()
    imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
    imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

    # pad to width and hight to 16 times
    if imgL.shape[2] % 16 != 0:
        times = imgL.shape[2] // 16
        top_pad = (times + 1) * 16 - imgL.shape[2]
    else:
        top_pad = 0
    if imgL.shape[3] % 16 != 0:
        times = imgL.shape[3] // 16
        left_pad = (times + 1) * 16 - imgL.shape[3]
    else:
        left_pad = 0
    imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                      mode='constant',
                      constant_values=0)
    imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                      mode='constant',
                      constant_values=0)

    start_time = time.time()
    pred_disp = test(imgL, imgR)
    print('time = %.2f' % (time.time() - start_time))
    if top_pad != 0 or left_pad != 0:
        img = pred_disp[top_pad:, :-left_pad]
    else:
        img = pred_disp
    img = (img * 256).astype('uint16')
    img = Image.fromarray(img)
    img.save('disparity.png')
Exemplo n.º 17
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):
        '''imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
       imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
       imgL = processed(imgL_o).numpy()
       imgR = processed(imgR_o).numpy() 
       imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]])
       imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])'''

        imgL_o = Image.open(test_left_img[inx]).convert('RGB')
        imgR_o = Image.open(test_right_img[inx]).convert('RGB')
        imgL = processed(imgL_o)
        imgR = processed(imgR_o)

        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        top_pad = 512 - imgL.shape[2]
        left_pad = 512 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        '''img_raw = get_normalize_invert(pred_disp)  # 图像去标准化
       img_raw = np.array(img_raw * 255).clip(0, 255).squeeze().astype('uint8')'''

        print('time = %.2f' % (time.time() - start_time))

        top_pad = 512 - imgL.shape[2]
        left_pad = 512 - imgL.shape[3]
        print(top_pad, left_pad)

        if top_pad == 0 and left_pad == 0:
            img = pred_disp
        else:
            img = pred_disp[top_pad:, :-left_pad]

        img = np.around(img, 1)

        skimage.io.imsave(test_left_img[inx].split('/')[-1],
                          (img * 255).astype('uint8'))
Exemplo n.º 18
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):

        imgL_o = skimage.io.imread(test_left_img[inx]).astype('float32')
        print(imgL_o.shape)

        ###
        #imgL_o = np.stack([imgL_o, imgL_o, imgL_o], 2)
        ###
        imgR_o = skimage.io.imread(test_right_img[inx]).astype('float32')
        ###
        #imgR_o = np.stack([imgR_o, imgR_o, imgR_o], 2)
        ###

        raw_h, raw_w = imgL_o.shape[0], imgL_o.shape[1]

        imgL_o = cv2.resize(imgL_o, (1242, 376))
        imgR_o = cv2.resize(imgR_o, (1242, 376))
        #imgL_o = imgL_o.resize( (1242, 376), Image.BILINEAR )
        #imgR_o = imgR_o.resize( (1242, 376), Image.BILINEAR )
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        top_pad = 384 - imgL.shape[2]
        left_pad = 1248 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = 384 - imgL_o.shape[0]
        left_pad = 1248 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]

        #writePFM(str(inx)+"result_syn.pfm", cv2.resize(img, (384,512)).astype(np.float32))
        writePFM(args.output,
                 cv2.resize(img, (raw_w, raw_h)).astype(np.float32))
Exemplo n.º 19
0
def main():
    processed = preprocess.get_transform(augment=False)
    padsize = 64
    if args.isgray:
        imgL_o = cv2.cvtColor(cv2.imread(args.leftimg,0), cv2.COLOR_GRAY2RGB)
        imgR_o = cv2.cvtColor(cv2.imread(args.rightimg,0), cv2.COLOR_GRAY2RGB)
    else:
        # imgL_o = cv2.cvtColor(cv2.imread(args.leftimg), cv2.COLOR_BGR2RGB)
        # imgR_o = cv2.cvtColor(cv2.imread(args.rightimg), cv2.COLOR_BGR2RGB)
        imgL_o = skimage.io.imread(args.leftimg)
        imgR_o = skimage.io.imread(args.rightimg)
        # imgL_o = Image.open(args.leftimg)
        # imgR_o = Image.open(args.rightimg)
    if real:
        imgL_o = np.pad(imgL_o,((0,0),(padsize,0),(0,0)))
        imgR_o = np.pad(imgR_o,((0,0),(0,padsize),(0,0)))
    imgL = processed(imgL_o).numpy()
    imgR = processed(imgR_o).numpy()
    imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]])
    imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])

    # pad to width and hight to 16 times
    if imgL.shape[2] % 16 != 0:
        times = imgL.shape[2]//16       
        top_pad = (times+1)*16 -imgL.shape[2]
    else:
        top_pad = 0
    if imgL.shape[3] % 16 != 0:
        times = imgL.shape[3]//16                       
        left_pad = (times+1)*16-imgL.shape[3]
    else:
        left_pad = 0     
    imgL = np.lib.pad(imgL,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
    imgR = np.lib.pad(imgR,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)

    start_time = time.time()
    pred_disp = test(imgL,imgR)


    print('time = %.2f' %(time.time() - start_time))
    if top_pad !=0 or left_pad != 0:
        img = pred_disp[top_pad:,:]
    else:
        img = pred_disp

    img = img[:,padsize:]
    writePFM(args.output, img.astype(np.float32))
Exemplo n.º 20
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):
        if not os.path.exists(test_left_img[inx]):
            continue
        imgL_o = cv2.imread(test_left_img[inx])
        shp = imgL_o.shape
        imgL_o = cv2.resize(imgL_o, (shp[1] // 2, shp[0] // 2),
                            interpolation=cv2.INTER_LINEAR)
        imgL_o = imgL_o.astype('float32')
        if not os.path.exists(test_right_img[inx]):
            continue
        imgR_o = cv2.imread(test_right_img[inx])
        imgR_o = cv2.resize(imgR_o, (shp[1] // 2, shp[0] // 2),
                            interpolation=cv2.INTER_LINEAR)
        imgR_o = imgR_o.astype('float32')

        #imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        #imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        top_pad = padding_size_x - imgL.shape[2]
        left_pad = padding_size_y - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = padding_size_x - imgL_o.shape[0]
        left_pad = padding_size_y - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        if not os.path.exists(args.result_path):
            os.makedirs(args.result_path)
        skimage.io.imsave(
            args.result_path + test_left_img[inx].split('/')[-1][:-4] + '.png',
            (img * 256).astype('uint16'))
Exemplo n.º 21
0
    def __init__(self, args):
        self.folders = []
        self.stereo_pair_subfolders = []
        self.kitti_testres = 1.8
        self.middlebury_testres = 1
        self.eth_testres = args.eth_testres
        self.transform = get_transform()
        self.variable_testres = (args.testres == -1)
        self.testres = args.testres
        self.debug = args.debug
        self.folders.append(os.path.join(args.datapath, 'training'))
        if not args.eval_train_only:
            self.folders.append(os.path.join(args.datapath, 'test'))

        self.stereo_pair_subfolders = {}
        self.total_len = 0
        for folder in self.folders:
            self.stereo_pair_subfolders[folder] = []
            datasets = [
                dataset for dataset in os.listdir(folder)
                if os.path.isdir(os.path.join(folder, dataset))
            ]

            for dataset_name in datasets:

                skip_this_image = False

                if not args.all_data:
                    skip_this_image = True
                    if args.debug_image != None and not args.debug_image in dataset_name:
                        skip_this_image = True
                    if args.kitti and "kitti2015" in dataset_name.lower():
                        skip_this_image = False
                    if args.eth and "eth3d" in dataset_name.lower():
                        skip_this_image = False
                    if args.mb and "middlebury" in dataset_name.lower():
                        skip_this_image = False

                if not skip_this_image:
                    self.stereo_pair_subfolders[folder].append(dataset_name)

            self.total_len += len(self.stereo_pair_subfolders[folder])

        self.args = args
Exemplo n.º 22
0
def main():
    processed = preprocess.get_transform(augment=False)
    if not os.path.isdir(args.save_path):
        os.makedirs(args.save_path)

    for inx in range(len(test_left_img)):

        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])
        calib = test_calib[inx]

        # pad to (384, 1248)
        top_pad = 384 - imgL.shape[2]
        left_pad = 1248 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR, calib)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = 384 - imgL_o.shape[0]
        left_pad = 1248 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        print(test_left_img[inx].split('/')[-1])
        if args.save_figure:
            skimage.io.imsave(
                args.save_path + '/' + test_left_img[inx].split('/')[-1],
                (img * 256).astype('uint16'))
        else:
            np.save(
                args.save_path + '/' + test_left_img[inx].split('/')[-1][:-4],
                img)
Exemplo n.º 23
0
def main():
    processed = preprocess.get_transform(augment=False)
    for inx in range(len(test_left_img)):
        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        print('imgL_o.shape', imgL_o.shape)
        print('imgR_o.shape', imgR_o.shape)
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (512, 384)
        print('imgL.shape', imgL.shape)
        top_pad = 544 - imgL.shape[2]
        left_pad = 416 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        print('imgL.shape', imgL.shape)
        print('imgR.shape', imgR.shape)
        start_time = time.time()
        pred_disp = test(imgL, imgR)

        print('pred_disp.shape', pred_disp.shape)

        print('time = %.2f' % (time.time() - start_time))

        top_pad = 544 - imgL_o.shape[0]
        left_pad = 416 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        # img = pred_disp[:]
        # prin(img)
        # skimage.io.imsave(test_left_img[inx].split('/')[-1],(img*256).astype('uint16'))
        plt.imsave(test_left_img[inx].split('/')[-1], img, cmap='jet')
        util.writePFM(str(inx) + '.pfm', img)
Exemplo n.º 24
0
def main():
    processed = preprocess.get_transform(augment=False)

    for inx in range(len(test_left_img)):

        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (384, 1248)
        # you can not pad to original resolution
        height = 384
        width = 1248
        #height = 1110
        #width = 1282
        top_pad = height - imgL.shape[2]
        left_pad = width - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        start_time = time.time()
        pred_disp = test(imgL, imgR)
        print('time = %.2f' % (time.time() - start_time))

        top_pad = 384 - imgL_o.shape[0]
        left_pad = 1248 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        print(test_left_img[inx].split('/')[-1])
        #predict_folder = "MB_test/"
        predict_folder = "KITTI2012_test_pretrained_2015/"
        skimage.io.imsave(predict_folder + test_left_img[inx].split('/')[-1],
                          (img * 256).astype('uint16'))
Exemplo n.º 25
0
def main():
    processed = preprocess.get_transform(augment=False)
    for inx in range(len(test_left_img)):
        imgL_o = (cv2.imread(test_left_img[inx]).astype('float32'))
        imgR_o = (cv2.imread(test_right_img[inx]).astype('float32'))
        print('imgL_o.shape', imgL_o.shape)
        print('imgR_o.shape', imgR_o.shape)
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])

        # pad to (428, 320)
        print('imgL.shape', imgL.shape)
        top_pad = 480 - imgL.shape[2]
        left_pad = 352 - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)

        print('imgL.shape', imgL.shape)
        print('imgR.shape', imgR.shape)
        start_time = time.time()
        pred_disp = test(imgL, imgR)

        print('pred_disp.shape', pred_disp.shape)

        print('time = %.2f' % (time.time() - start_time))

        top_pad = 480 - imgL_o.shape[0]
        left_pad = 352 - imgL_o.shape[1]
        img = pred_disp[top_pad:, :-left_pad]
        plt.imsave('r' + str(inx) + '.png', img, cmap='jet')
        util.writePFM(str(inx) + '.pfm', img)
Exemplo n.º 26
0
def main_worker(args, ml_logger):
    global best_acc1

    if args.gpu_ids is not None:
        print("Use GPU: {} for training".format(args.gpu_ids))

    if args.log_stats:
        from utils.stats_trucker import StatsTrucker as ST
        ST("W{}A{}".format(args.bit_weights, args.bit_act))

    if 'resnet' in args.arch and args.custom_resnet:
        model = custom_resnet(arch=args.arch,
                              pretrained=args.pretrained,
                              depth=arch2depth(args.arch),
                              dataset=args.dataset)
    elif 'inception_v3' in args.arch and args.custom_inception:
        model = custom_inception(pretrained=args.pretrained)
    else:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=args.pretrained)

    device = torch.device('cuda:{}'.format(args.gpu_ids[0]))
    cudnn.benchmark = True

    torch.cuda.set_device(args.gpu_ids[0])
    model = model.to(device)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, device)
            args.start_epoch = checkpoint['epoch']
            # best_acc1 = checkpoint['best_acc1']
            # best_acc1 may be from a checkpoint from a different GPU
            # best_acc1 = best_acc1.to(device)
            checkpoint['state_dict'] = {
                normalize_module_name(k): v
                for k, v in checkpoint['state_dict'].items()
            }
            model.load_state_dict(checkpoint['state_dict'], strict=False)
            # optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    if len(args.gpu_ids) > 1:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features,
                                                   args.gpu_ids)
        else:
            model = torch.nn.DataParallel(model, args.gpu_ids)

    default_transform = {
        'train': get_transform(args.dataset, augment=True),
        'eval': get_transform(args.dataset, augment=False)
    }

    val_data = get_dataset(args.dataset, 'val', default_transform['eval'])
    val_loader = torch.utils.data.DataLoader(val_data,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().to(device)

    train_data = get_dataset(args.dataset, 'train', default_transform['train'])
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               drop_last=True)

    # TODO: replace this call by initialization on small subset of training data
    # TODO: enable for activations
    # validate(val_loader, model, criterion, args, device)

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    # optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    lr_scheduler = StepLR(optimizer, step_size=args.lr_step, gamma=0.1)

    mq = None
    if args.quantize:
        if args.bn_folding:
            print(
                "Applying batch-norm folding ahead of post-training quantization"
            )
            from utils.absorb_bn import search_absorbe_bn
            search_absorbe_bn(model)

        all_convs = [
            n for n, m in model.named_modules() if isinstance(m, nn.Conv2d)
        ]
        # all_convs = [l for l in all_convs if 'downsample' not in l]
        all_relu = [
            n for n, m in model.named_modules() if isinstance(m, nn.ReLU)
        ]
        all_relu6 = [
            n for n, m in model.named_modules() if isinstance(m, nn.ReLU6)
        ]
        layers = all_relu[1:-1] + all_relu6[1:-1] + all_convs[1:]
        replacement_factory = {
            nn.ReLU: ActivationModuleWrapper,
            nn.ReLU6: ActivationModuleWrapper,
            nn.Conv2d: ParameterModuleWrapper
        }
        mq = ModelQuantizer(
            model, args, layers, replacement_factory,
            OptimizerBridge(optimizer,
                            settings={
                                'algo': 'SGD',
                                'dataset': args.dataset
                            }))

        if args.resume:
            # Load quantization parameters from state dict
            mq.load_state_dict(checkpoint['state_dict'])

        mq.log_quantizer_state(ml_logger, -1)

        if args.model_freeze:
            mq.freeze()

    if args.evaluate:
        if args.log_stats:
            mean = []
            var = []
            skew = []
            kurt = []
            for n, p in model.named_parameters():
                if n.replace('.weight', '') in all_convs[1:]:
                    mu = p.mean()
                    std = p.std()
                    mean.append((n, mu.item()))
                    var.append((n, (std**2).item()))
                    skew.append((n, torch.mean(((p - mu) / std)**3).item()))
                    kurt.append((n, torch.mean(((p - mu) / std)**4).item()))
            for i in range(len(mean)):
                ml_logger.log_metric(mean[i][0] + '.mean', mean[i][1])
                ml_logger.log_metric(var[i][0] + '.var', var[i][1])
                ml_logger.log_metric(skew[i][0] + '.skewness', skew[i][1])
                ml_logger.log_metric(kurt[i][0] + '.kurtosis', kurt[i][1])

            ml_logger.log_metric('weight_mean', np.mean([s[1] for s in mean]))
            ml_logger.log_metric('weight_var', np.mean([s[1] for s in var]))
            ml_logger.log_metric('weight_skewness',
                                 np.mean([s[1] for s in skew]))
            ml_logger.log_metric('weight_kurtosis',
                                 np.mean([s[1] for s in kurt]))

        acc = validate(val_loader, model, criterion, args, device)
        ml_logger.log_metric('Val Acc1', acc)
        if args.log_stats:
            stats = ST().get_stats()
            for s in stats:
                ml_logger.log_metric(s, np.mean(stats[s]))
        return

    # evaluate on validation set
    acc1 = validate(val_loader, model, criterion, args, device)
    ml_logger.log_metric('Val Acc1', acc1, -1)

    # evaluate with k-means quantization
    # if args.model_freeze:
    # with mq.disable():
    #     acc1_nq = validate(val_loader, model, criterion, args, device)
    #     ml_logger.log_metric('Val Acc1 fp32', acc1_nq, -1)

    for epoch in range(0, args.epochs):
        # train for one epoch
        print('Timestamp Start epoch: {:%Y-%m-%d %H:%M:%S}'.format(
            datetime.datetime.now()))
        train(train_loader, model, criterion, optimizer, epoch, args, device,
              ml_logger, val_loader, mq)
        print('Timestamp End epoch: {:%Y-%m-%d %H:%M:%S}'.format(
            datetime.datetime.now()))

        if not args.lr_freeze:
            lr_scheduler.step()

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args, device)
        ml_logger.log_metric('Val Acc1', acc1, step='auto')

        # evaluate with k-means quantization
        # if args.model_freeze:
        # with mq.quantization_method('kmeans'):
        #     acc1_kmeans = validate(val_loader, model, criterion, args, device)
        #     ml_logger.log_metric('Val Acc1 kmeans', acc1_kmeans, epoch)

        # with mq.disable():
        #     acc1_nq = validate(val_loader, model, criterion, args, device)
        #     ml_logger.log_metric('Val Acc1 fp32', acc1_nq,  step='auto')

        if args.quantize:
            mq.log_quantizer_state(ml_logger, epoch)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        save_checkpoint(
            {
                'epoch':
                epoch + 1,
                'arch':
                args.arch,
                'state_dict':
                model.state_dict()
                if len(args.gpu_ids) == 1 else model.module.state_dict(),
                'best_acc1':
                best_acc1,
                'optimizer':
                optimizer.state_dict(),
            }, is_best)
Exemplo n.º 27
0
    def __getitem__(self, index):
        left = self.left[index]
        right = self.right[index]
        left_img = self.loader(left)
        right_img = self.loader(right)
        disp_L = self.disp_L[index]
        dataL = self.dploader(disp_L)
        dataL[dataL == np.inf] = 0

        if not (self.disp_R is None):
            disp_R = self.disp_R[index]
            dataR = self.dploader(disp_R)
            dataR[dataR == np.inf] = 0

        max_h = 2048 // 4
        max_w = 3072 // 4

        # photometric unsymmetric-augmentation
        random_brightness = np.random.uniform(self.rand_bright[0],
                                              self.rand_bright[1], 2)
        random_gamma = np.random.uniform(0.8, 1.2, 2)
        random_contrast = np.random.uniform(0.8, 1.2, 2)
        left_img = torchvision.transforms.functional.adjust_brightness(
            left_img, random_brightness[0])
        left_img = torchvision.transforms.functional.adjust_gamma(
            left_img, random_gamma[0])
        left_img = torchvision.transforms.functional.adjust_contrast(
            left_img, random_contrast[0])
        right_img = torchvision.transforms.functional.adjust_brightness(
            right_img, random_brightness[1])
        right_img = torchvision.transforms.functional.adjust_gamma(
            right_img, random_gamma[1])
        right_img = torchvision.transforms.functional.adjust_contrast(
            right_img, random_contrast[1])
        right_img = np.asarray(right_img)
        left_img = np.asarray(left_img)

        # horizontal flip
        if not (self.disp_R is None):
            if np.random.binomial(1, 0.5):
                tmp = right_img
                right_img = left_img[:, ::-1]
                left_img = tmp[:, ::-1]
                tmp = dataR
                dataR = dataL[:, ::-1]
                dataL = tmp[:, ::-1]

        # geometric unsymmetric-augmentation
        angle = 0
        px = 0
        if np.random.binomial(1, 0.5):
            angle = 0.1
            px = 2
        co_transform = flow_transforms.Compose([
            flow_transforms.RandomVdisp(angle, px),
            flow_transforms.Scale(np.random.uniform(self.rand_scale[0],
                                                    self.rand_scale[1]),
                                  order=self.order),
            flow_transforms.RandomCrop((max_h, max_w)),
        ])
        augmented, dataL = co_transform([left_img, right_img], dataL)
        left_img = augmented[0]
        right_img = augmented[1]

        # randomly occlude a region
        if np.random.binomial(1, 0.5):
            sx = int(np.random.uniform(50, 150))
            sy = int(np.random.uniform(50, 150))
            cx = int(np.random.uniform(sx, right_img.shape[0] - sx))
            cy = int(np.random.uniform(sy, right_img.shape[1] - sy))
            right_img[cx - sx:cx + sx,
                      cy - sy:cy + sy] = np.mean(np.mean(right_img, 0),
                                                 0)[np.newaxis, np.newaxis]

        h, w, _ = left_img.shape
        top_pad = max_h - h
        left_pad = max_w - w
        left_img = np.lib.pad(left_img, ((top_pad, 0), (0, left_pad), (0, 0)),
                              mode='constant',
                              constant_values=0)
        right_img = np.lib.pad(right_img,
                               ((top_pad, 0), (0, left_pad), (0, 0)),
                               mode='constant',
                               constant_values=0)

        dataL = np.expand_dims(np.expand_dims(dataL, 0), 0)
        dataL = np.lib.pad(dataL,
                           ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                           mode='constant',
                           constant_values=0)[0, 0]
        dataL = np.ascontiguousarray(dataL, dtype=np.float32)

        processed = preprocess.get_transform()
        left_img = processed(left_img)
        right_img = processed(right_img)
        return left_img, right_img, dataL
Exemplo n.º 28
0
    model.eval()

    imgL = torch.FloatTensor(imgL).cuda()
    imgR = torch.FloatTensor(imgR).cuda()     

    imgL, imgR= Variable(imgL), Variable(imgR)

    with torch.no_grad():
        disp = model(imgL,imgR)

    disp = torch.squeeze(disp)
    pred_disp = disp.data.cpu().numpy()

    return pred_disp

processed = preprocess.get_transform(augment=False)

def cal_disp(imgL_o,imgR_o):

    imgL = processed(imgL_o).numpy()
    imgR = processed(imgR_o).numpy()
    imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]])
    imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])

    # pad to width and hight to 16 times
    if imgL.shape[2] % 16 != 0:
        times = imgL.shape[2]//16       
        top_pad = (times+1)*16 -imgL.shape[2]
    else:
        top_pad = 0
    if imgL.shape[3] % 16 != 0:
Exemplo n.º 29
0
def main():
    processed = get_transform()
    model.eval()
    for inx in range(len(test_left_img)):
        print(test_left_img[inx])
        imgL_o = (skimage.io.imread(test_left_img[inx]).astype('float32'))[:,:,:3]
        imgR_o = (skimage.io.imread(test_right_img[inx]).astype('float32'))[:,:,:3]
        imgsize = imgL_o.shape[:2]

        if args.max_disp>0:
            if args.max_disp % 16 != 0:
                args.max_disp = 16 * math.floor(args.max_disp/16)
            max_disp = int(args.max_disp)
        else:
            with open(test_left_img[inx].replace('im0.png','calib.txt')) as f:
                lines = f.readlines()
                max_disp = int(int(lines[6].split('=')[-1]))

        ## change max disp
        tmpdisp = int(max_disp*args.testres//64*64)
        if (max_disp*args.testres/64*64) > tmpdisp:
            model.module.maxdisp = tmpdisp + 64
        else:
            model.module.maxdisp = tmpdisp
        if model.module.maxdisp ==64: model.module.maxdisp=128
        model.module.disp_reg8 =  disparityregression(model.module.maxdisp,16).cuda()
        model.module.disp_reg16 = disparityregression(model.module.maxdisp,16).cuda()
        model.module.disp_reg32 = disparityregression(model.module.maxdisp,32).cuda()
        model.module.disp_reg64 = disparityregression(model.module.maxdisp,64).cuda()
        print(model.module.maxdisp)
        
        # resize
        imgL_o = cv2.resize(imgL_o,None,fx=args.testres,fy=args.testres,interpolation=cv2.INTER_CUBIC)
        imgR_o = cv2.resize(imgR_o,None,fx=args.testres,fy=args.testres,interpolation=cv2.INTER_CUBIC)
        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()

        imgL = np.reshape(imgL,[1,3,imgL.shape[1],imgL.shape[2]])
        imgR = np.reshape(imgR,[1,3,imgR.shape[1],imgR.shape[2]])

        ##fast pad
        max_h = int(imgL.shape[2] // 64 * 64)
        max_w = int(imgL.shape[3] // 64 * 64)
        if max_h < imgL.shape[2]: max_h += 64
        if max_w < imgL.shape[3]: max_w += 64

        top_pad = max_h-imgL.shape[2]
        left_pad = max_w-imgL.shape[3]
        imgL = np.lib.pad(imgL,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)
        imgR = np.lib.pad(imgR,((0,0),(0,0),(top_pad,0),(0,left_pad)),mode='constant',constant_values=0)

        # test
        imgL = Variable(torch.FloatTensor(imgL).cuda())
        imgR = Variable(torch.FloatTensor(imgR).cuda())
        with torch.no_grad():
            torch.cuda.synchronize()
            start_time = time.time()
            pred_disp,entropy = model(imgL,imgR)
            torch.cuda.synchronize()
            ttime = (time.time() - start_time); print('time = %.2f' % (ttime*1000) )
        pred_disp = torch.squeeze(pred_disp).data.cpu().numpy()

        top_pad   = max_h-imgL_o.shape[0]
        left_pad  = max_w-imgL_o.shape[1]
        entropy = entropy[top_pad:,:pred_disp.shape[1]-left_pad].cpu().numpy()
        pred_disp = pred_disp[top_pad:,:pred_disp.shape[1]-left_pad]

        # save predictions
        idxname = test_left_img[inx].split('/')[-2]
        if not os.path.exists('%s/%s'%(args.outdir,idxname)):
            os.makedirs('%s/%s'%(args.outdir,idxname))
        idxname = '%s/disp0HSM'%(idxname)

        # resize to highres
        pred_disp = cv2.resize(pred_disp/args.testres,(imgsize[1],imgsize[0]),interpolation=cv2.INTER_LINEAR)

        # clip while keep inf
        invalid = np.logical_or(pred_disp == np.inf,pred_disp!=pred_disp)
        pred_disp[invalid] = np.inf

        np.save('%s/%s-disp.npy'% (args.outdir, idxname.split('/')[0]),(pred_disp))
        np.save('%s/%s-ent.npy'% (args.outdir, idxname.split('/')[0]),(entropy))
        cv2.imwrite('%s/%s-disp.png'% (args.outdir, idxname.split('/')[0]),pred_disp/pred_disp[~invalid].max()*255)
        cv2.imwrite('%s/%s-ent.png'% (args.outdir, idxname.split('/')[0]),entropy/entropy.max()*255)

        with open('%s/%s.pfm'% (args.outdir, idxname),'w') as f:
            save_pfm(f,pred_disp[::-1,:])
        with open('%s/%s/timeHSM.txt'%(args.outdir,idxname.split('/')[0]),'w') as f:
             f.write(str(ttime))
            
        torch.cuda.empty_cache()
Exemplo n.º 30
0
def main():
    processed = get_transform()
    model.eval()

    # save predictions
    out_path = os.path.join("./kitti_submission_output", args.name)
    if not os.path.exists(out_path):
        os.mkdir(out_path)
    out_dir = os.path.join(out_path, "disp_0")
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)

    for (left_img_path, right_img_path,
         disp_path) in zip(left_val, right_val, disp_val_L):
        # print(test_left_img[inx])
        print(left_img_path)
        imgL_o = (skimage.io.imread(left_img_path).astype('float32'))[:, :, :3]
        imgR_o = (
            skimage.io.imread(right_img_path).astype('float32'))[:, :, :3]
        imgsize = imgL_o.shape[:2]
        # torch.save(imgL_o, "/home/isaac/high-res-stereo/debug/my_submission/img0.pt")

        if args.max_disp > 0:
            max_disp = int(args.max_disp)
        else:
            with open(
                    '/home/isaac/rvc_devkit/stereo/datasets_middlebury2014/training/Kitti2015_000028_10/calib.txt'
            ) as f:
                lines = f.readlines()
                max_disp = int(int(lines[6].split('=')[-1]))

        ## change max disp
        tmpdisp = int(max_disp * args.testres // 64 * 64)
        if (max_disp * args.testres / 64 * 64) > tmpdisp:
            model.module.maxdisp = tmpdisp + 64
        else:
            model.module.maxdisp = tmpdisp
        if model.module.maxdisp == 64: model.module.maxdisp = 128
        model.module.disp_reg8 = disparityregression(model.module.maxdisp,
                                                     16).cuda()
        model.module.disp_reg16 = disparityregression(model.module.maxdisp,
                                                      16).cuda()
        model.module.disp_reg32 = disparityregression(model.module.maxdisp,
                                                      32).cuda()
        model.module.disp_reg64 = disparityregression(model.module.maxdisp,
                                                      64).cuda()

        # resize
        imgL_o = cv2.resize(imgL_o,
                            None,
                            fx=args.testres,
                            fy=args.testres,
                            interpolation=cv2.INTER_CUBIC)
        imgR_o = cv2.resize(imgR_o,
                            None,
                            fx=args.testres,
                            fy=args.testres,
                            interpolation=cv2.INTER_CUBIC)
        # torch.save(imgL_o, "/home/isaac/high-res-stereo/debug/my_submission/img1.pt")

        imgL = processed(imgL_o).numpy()
        imgR = processed(imgR_o).numpy()
        # torch.save(imgL, "/home/isaac/high-res-stereo/debug/my_submission/img2.pt")

        imgL = np.reshape(imgL, [1, 3, imgL.shape[1], imgL.shape[2]])
        imgR = np.reshape(imgR, [1, 3, imgR.shape[1], imgR.shape[2]])
        # torch.save(imgL, "/home/isaac/high-res-stereo/debug/my_submission/img3.pt")

        ##fast pad
        max_h = int(imgL.shape[2] // 64 * 64)
        max_w = int(imgL.shape[3] // 64 * 64)
        if max_h < imgL.shape[2]: max_h += 64
        if max_w < imgL.shape[3]: max_w += 64

        top_pad = max_h - imgL.shape[2]
        left_pad = max_w - imgL.shape[3]
        imgL = np.lib.pad(imgL, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        imgR = np.lib.pad(imgR, ((0, 0), (0, 0), (top_pad, 0), (0, left_pad)),
                          mode='constant',
                          constant_values=0)
        # torch.save(imgL, "/home/isaac/high-res-stereo/debug/my_submission/img4.pt")

        # test
        imgL = torch.FloatTensor(imgL)
        imgR = torch.FloatTensor(imgR)
        wandb.log({
            "imgL": wandb.Image(imgL, caption=str(imgL.shape)),
            "imgR": wandb.Image(imgR, caption=str(imgR.shape))
        })
        imgL = imgL.cuda()
        imgR = imgR.cuda()
        with torch.no_grad():
            torch.cuda.synchronize()
            start_time = time.time()

            # torch.save(imgL, "/home/isaac/high-res-stereo/debug/my_submission/img_final.pt")

            pred_disp, entropy = model(imgL, imgR)
            torch.cuda.synchronize()
            ttime = (time.time() - start_time)

        pred_disp = torch.squeeze(pred_disp).data.cpu().numpy()

        top_pad = max_h - imgL_o.shape[0]
        left_pad = max_w - imgL_o.shape[1]
        entropy = entropy[top_pad:, :pred_disp.shape[1] -
                          left_pad].cpu().numpy()
        pred_disp = pred_disp[top_pad:, :pred_disp.shape[1] - left_pad]

        img_name = os.path.basename(os.path.normpath(left_img_path))

        # resize to highres
        pred_disp = cv2.resize(pred_disp / args.testres,
                               (imgsize[1], imgsize[0]),
                               interpolation=cv2.INTER_LINEAR)

        # clip while keep inf
        invalid = np.logical_or(pred_disp == np.inf, pred_disp != pred_disp)
        pred_disp[invalid] = np.inf

        # np.save('%s/%s' % (out_dir, img_name), (pred_disp))
        # np.save('%s/%s-ent.npy' % (out_dir, idxname.split('/')[0]), (entropy))
        pred_disp_png = (pred_disp * 256).astype('uint16')
        cv2.imwrite(os.path.join(out_dir, img_name), pred_disp_png)
        entropy_png = (entropy * 256).astype('uint16')
        # cv2.imwrite(os.path.join(out_dir, img_name), entropy_png)

        wandb.log({
            "disp":
            wandb.Image(pred_disp_png, caption=str(pred_disp_png.shape)),
            "entropy":
            wandb.Image(entropy_png, caption=str(entropy_png.shape))
        })

        # with open('%s/%s.pfm' % (out_dir, idxname), 'w') as f:
        #     save_pfm(f, pred_disp[::-1, :])
        # with open('%s/%s/timeHSM.txt' % (out_dir, idxname.split('/')[0]), 'w') as f:
        #     f.write(str(ttime))

        torch.cuda.empty_cache()

    subprocess.run(
        ["/home/isaac/KITTI2015_devkit/cpp/eval_scene_flow", out_path + "/"])