Exemplo n.º 1
0
def main():
    cfg.device = torch.device('cuda')
    torch.backends.cudnn.benchmark = False

    max_per_image = 100
    num_classes = 80 if cfg.dataset == 'coco' else 4
    dictionary = np.load(cfg.dictionary_file)

    colors = COCO_COLORS if cfg.dataset == 'coco' else DETRAC_COLORS
    names = COCO_NAMES if cfg.dataset == 'coco' else DETRAC_NAMES
    for j in range(len(names)):
        col_ = [c * 255 for c in colors[j]]
        colors[j] = tuple(col_)

    print('Creating model and recover from checkpoint ...')
    if 'hourglass' in cfg.arch:
        model = exkp(n=5,
                     nstack=2,
                     dims=[256, 256, 384, 384, 384, 512],
                     modules=[2, 2, 2, 2, 2, 4],
                     num_classes=num_classes)
    else:
        model = get_pose_net(num_layers=int(cfg.arch.split('_')[-1]),
                             num_classes=80)
        # raise NotImplementedError

    model = load_demo_model(model, cfg.ckpt_dir)
    model = model.to(cfg.device)
    model.eval()

    # Loading COCO validation images
    annotation_file = '{}/annotations/instances_{}.json'.format(
        cfg.data_dir, cfg.data_type)
    coco = COCO(annotation_file)

    # Load all annotations
    cats = coco.loadCats(coco.getCatIds())
    nms = [cat['name'] for cat in cats]
    catIds = coco.getCatIds(catNms=nms)
    # imgIds = coco.getImgIds(catIds=catIds)
    imgIds = coco.getImgIds()
    # annIds = coco.getAnnIds(catIds=catIds)
    # all_anns = coco.loadAnns(ids=annIds)
    # print(len(imgIds), imgIds)

    for id in imgIds:
        annt_ids = coco.getAnnIds(imgIds=[id])
        annotations_per_img = coco.loadAnns(ids=annt_ids)
        # print('All annots: ', len(annotations_per_img), annotations_per_img)
        img = coco.loadImgs(id)[0]
        image_path = '%s/images/%s/%s' % (cfg.data_dir, cfg.data_type,
                                          img['file_name'])
        w_img = int(img['width'])
        h_img = int(img['height'])
        if w_img < 1 or h_img < 1:
            continue

        img_original = cv2.imread(image_path)
        img_connect = cv2.imread(image_path)
        img_recon = cv2.imread(image_path)
        print('Image id: ', id)

        for annt in annotations_per_img:
            if annt['iscrowd'] == 1 or type(annt['segmentation']) != list:
                continue

            polygons = get_connected_polygon_using_mask(
                annt['segmentation'], (h_img, w_img),
                n_vertices=cfg.num_vertices,
                closing_max_kernel=60)
            gt_bbox = annt['bbox']
            gt_x1, gt_y1, gt_w, gt_h = gt_bbox
            contour = np.array(polygons).reshape((-1, 2))

            # Downsample the contour to fix number of vertices
            if len(contour) > cfg.num_vertices:
                resampled_contour = resample(contour, num=cfg.num_vertices)
            else:
                resampled_contour = turning_angle_resample(
                    contour, cfg.num_vertices)

            resampled_contour[:, 0] = np.clip(resampled_contour[:, 0], gt_x1,
                                              gt_x1 + gt_w)
            resampled_contour[:, 1] = np.clip(resampled_contour[:, 1], gt_y1,
                                              gt_y1 + gt_h)

            clockwise_flag = check_clockwise_polygon(resampled_contour)
            if not clockwise_flag:
                fixed_contour = np.flip(resampled_contour, axis=0)
            else:
                fixed_contour = resampled_contour.copy()

            # Indexing from the left-most vertex, argmin x-axis
            idx = np.argmin(fixed_contour[:, 0])
            indexed_shape = np.concatenate(
                (fixed_contour[idx:, :], fixed_contour[:idx, :]), axis=0)

            x1, y1, x2, y2 = gt_x1, gt_y1, gt_x1 + gt_w, gt_y1 + gt_h

            # bbox_width, bbox_height = x2 - x1, y2 - y1
            # bbox = [x1, y1, bbox_width, bbox_height]
            # bbox_center = np.array([(x1 + x2) / 2., (y1 + y2) / 2.])
            bbox_center = np.mean(indexed_shape, axis=0)

            centered_shape = indexed_shape - bbox_center

            # visualize resampled points with multiple parts in image side by side
            for cnt in range(len(annt['segmentation'])):
                polys = np.array(annt['segmentation'][cnt]).reshape((-1, 2))
                cv2.polylines(img_original, [polys.astype(np.int32)],
                              True, (10, 10, 255),
                              thickness=2)
                # cv2.drawContours(img_original, [polys.astype(np.int32)], contourIdx=-1, color=(10, 10, 255), thickness=-1)

            cv2.polylines(img_connect, [indexed_shape.astype(np.int32)],
                          True, (10, 10, 255),
                          thickness=2)
            # cv2.drawContours(img_connect, [indexed_shape.astype(np.int32)], contourIdx=-1, color=(10, 10, 255), thickness=-1)

            learned_val_codes, _ = fast_ista(centered_shape.reshape((1, -1)),
                                             dictionary,
                                             lmbda=0.1,
                                             max_iter=60)
            recon_contour = np.matmul(learned_val_codes, dictionary).reshape(
                (-1, 2))
            recon_contour = recon_contour + bbox_center
            cv2.polylines(img_recon, [recon_contour.astype(np.int32)],
                          True, (10, 10, 255),
                          thickness=2)
            # cv2.drawContours(img_recon, [recon_contour.astype(np.int32)], contourIdx=-1, color=(10, 10, 255), thickness=-1)

            # plot gt mean and std
            # image = cv2.imread(image_path)
            # # cv2.ellipse(image, center=(int(contour_mean[0]), int(contour_mean[1])),
            # #             axes=(int(contour_std[0]), int(contour_std[1])),
            # #             angle=0, startAngle=0, endAngle=360, color=(0, 255, 0),
            # #             thickness=2)
            # cv2.rectangle(image, pt1=(int(contour_mean[0] - contour_std[0] / 2.), int(contour_mean[1] - contour_std[1] / 2.)),
            #               pt2=(int(contour_mean[0] + contour_std[0] / 2.), int(contour_mean[1] + contour_std[1] / 2.)),
            #               color=(0, 255, 0), thickness=2)
            # cv2.polylines(image, [fixed_contour.astype(np.int32)], True, (0, 0, 255))
            # cv2.rectangle(image, pt1=(int(min(fixed_contour[:, 0])), int(min(fixed_contour[:, 1]))),
            #               pt2=(int(max(fixed_contour[:, 0])), int(max(fixed_contour[:, 1]))),
            #               color=(255, 0, 0), thickness=2)
            # cv2.imshow('GT segments', image)
            # if cv2.waitKey() & 0xFF == ord('q'):
            #     break

        image = cv2.imread(image_path)
        original_image = image.copy()
        height, width = image.shape[0:2]
        padding = 127 if 'hourglass' in cfg.arch else 31
        imgs = {}
        for scale in cfg.test_scales:
            new_height = int(height * scale)
            new_width = int(width * scale)

            if cfg.img_size > 0:
                img_height, img_width = cfg.img_size, cfg.img_size
                center = np.array([new_width / 2., new_height / 2.],
                                  dtype=np.float32)
                scaled_size = max(height, width) * 1.0
                scaled_size = np.array([scaled_size, scaled_size],
                                       dtype=np.float32)
            else:
                img_height = (new_height | padding) + 1
                img_width = (new_width | padding) + 1
                center = np.array([new_width // 2, new_height // 2],
                                  dtype=np.float32)
                scaled_size = np.array([img_width, img_height],
                                       dtype=np.float32)

            img = cv2.resize(image, (new_width, new_height))
            trans_img = get_affine_transform(center, scaled_size, 0,
                                             [img_width, img_height])
            img = cv2.warpAffine(img, trans_img, (img_width, img_height))

            img = img.astype(np.float32) / 255.
            img -= np.array(
                COCO_MEAN if cfg.dataset == 'coco' else DETRAC_MEAN,
                dtype=np.float32)[None, None, :]
            img /= np.array(COCO_STD if cfg.dataset == 'coco' else DETRAC_STD,
                            dtype=np.float32)[None, None, :]
            img = img.transpose(
                2, 0, 1)[None, :, :, :]  # from [H, W, C] to [1, C, H, W]

            # if cfg.test_flip:
            #     img = np.concatenate((img, img[:, :, :, ::-1].copy()), axis=0)

            imgs[scale] = {
                'image': torch.from_numpy(img).float(),
                'center': np.array(center),
                'scale': np.array(scaled_size),
                'fmap_h': np.array(img_height // 4),
                'fmap_w': np.array(img_width // 4)
            }

        with torch.no_grad():
            segmentations = []
            predicted_codes = []
            start_time = time.time()
            for scale in imgs:
                imgs[scale]['image'] = imgs[scale]['image'].to(cfg.device)

                output = model(imgs[scale]['image'])[-1]
                # segms, codes_ = ctsegm_scaled_decode_debug(*output, torch.from_numpy(dictionary.astype(np.float32)).to(cfg.device),
                #                             K=cfg.test_topk)
                segms = ctsegm_code_n_offset_decode(
                    *output,
                    torch.from_numpy(dictionary.astype(np.float32)).to(
                        cfg.device),
                    K=cfg.test_topk)
                segms = segms.detach().cpu().numpy().reshape(
                    1, -1, segms.shape[2])[0]
                # codes_ = codes_.detach().cpu().numpy().reshape(1, -1, codes_.shape[2])[0]

                top_preds = {}
                code_preds = {}
                for j in range(cfg.num_vertices):
                    segms[:, 2 * j:2 * j + 2] = transform_preds(
                        segms[:, 2 * j:2 * j + 2], imgs[scale]['center'],
                        imgs[scale]['scale'],
                        (imgs[scale]['fmap_w'], imgs[scale]['fmap_h']))
                segms[:, cfg.num_vertices * 2:cfg.num_vertices * 2 +
                      2] = transform_preds(
                          segms[:,
                                cfg.num_vertices * 2:cfg.num_vertices * 2 + 2],
                          imgs[scale]['center'], imgs[scale]['scale'],
                          (imgs[scale]['fmap_w'], imgs[scale]['fmap_h']))
                segms[:, cfg.num_vertices * 2 + 2:cfg.num_vertices * 2 +
                      4] = transform_preds(
                          segms[:, cfg.num_vertices * 2 +
                                2:cfg.num_vertices * 2 + 4],
                          imgs[scale]['center'], imgs[scale]['scale'],
                          (imgs[scale]['fmap_w'], imgs[scale]['fmap_h']))

                clses = segms[:, -1]
                for j in range(num_classes):
                    inds = (clses == j)
                    top_preds[j + 1] = segms[inds, :cfg.num_vertices * 2 +
                                             5].astype(np.float32)
                    top_preds[j + 1][:, :cfg.num_vertices * 2 + 4] /= scale
                    # code_preds[j + 1] = codes_[inds, :]

                segmentations.append(top_preds)
                predicted_codes.append(code_preds)

            segms_and_scores = {
                j: np.concatenate([d[j] for d in segmentations], axis=0)
                for j in range(1, num_classes + 1)
            }  # a Dict label: segments
            # codes_and_scores = {j: np.concatenate([d[j] for d in predicted_codes], axis=0)
            #                     for j in range(1, num_classes + 1)}  # a Dict label: segments
            scores = np.hstack([
                segms_and_scores[j][:, cfg.num_vertices * 2 + 4]
                for j in range(1, num_classes + 1)
            ])

            if len(scores) > max_per_image:
                kth = len(scores) - max_per_image
                thresh = np.partition(scores, kth)[kth]
                for j in range(1, num_classes + 1):
                    keep_inds = (segms_and_scores[j][:, cfg.num_vertices * 2 +
                                                     4] >= thresh)
                    segms_and_scores[j] = segms_and_scores[j][keep_inds]
                    # codes_and_scores[j] = codes_and_scores[j][keep_inds]

            # Use opencv functions to output a video
            output_image = original_image
            blend_mask = np.zeros(shape=output_image.shape, dtype=np.uint8)
            # print(blend_mask.shape)

            for lab in segms_and_scores:
                for idx in range(len(segms_and_scores[lab])):
                    res = segms_and_scores[lab][idx]
                    # c_ = codes_and_scores[lab][idx]
                    # for res in segms_and_scores[lab]:
                    contour, bbox, score = res[:-5], res[-5:-1], res[-1]
                    bbox[0] = np.clip(bbox[0], 0, w_img)
                    bbox[1] = np.clip(bbox[1], 0, h_img)
                    bbox[2] = np.clip(bbox[2], 0, w_img)
                    bbox[3] = np.clip(bbox[3], 0, h_img)
                    if score > cfg.detect_thres:
                        text = names[lab]  # + ' %.2f' % score
                        # label_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_COMPLEX, thickness=2, fontScale=0.5)
                        polygon = contour.reshape((-1, 2))
                        # print('Shape: Poly -- ', polygon.shape)
                        # print(polygon)
                        polygon[:, 0] = np.clip(polygon[:, 0], 0, w_img - 1)
                        polygon[:, 1] = np.clip(polygon[:, 1], 0, h_img - 1)

                        # use bb tools to draw predictions
                        color = random.choice(COLOR_WORLD)
                        bb.add(output_image, bbox[0], bbox[1], bbox[2],
                               bbox[3], text, color)
                        cv2.polylines(output_image, [polygon.astype(np.int32)],
                                      True,
                                      RGB_DICT[color],
                                      thickness=1)
                        cv2.drawContours(blend_mask,
                                         [polygon.astype(np.int32)],
                                         contourIdx=-1,
                                         color=RGB_DICT[color],
                                         thickness=-1)

                        # color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
                        # contour_mean = np.mean(polygon, axis=0)
                        # contour_std = np.std(polygon, axis=0)
                        # center_x, center_y = np.mean(polygon, axis=0).astype(np.int32)
                        # text_location = [bbox[0] + 1, bbox[1] + 1,
                        #                  bbox[1] + label_size[0][0] + 1,
                        #                  bbox[0] + label_size[0][1] + 1]
                        # cv2.rectangle(output_image, pt1=(int(bbox[0]), int(bbox[1])),
                        #               pt2=(int(bbox[2]), int(bbox[3])),
                        #               color=color, thickness=1)
                        # cv2.rectangle(output_image, pt1=(int(np.min(polygon[:, 0])), int(np.min(polygon[:, 1]))),
                        #               pt2=(int(np.max(polygon[:, 0])), int(np.max(polygon[:, 1]))),
                        #               color=(0, 255, 0), thickness=1)
                        # cv2.polylines(output_image, [polygon.astype(np.int32)], True, color, thickness=2)
                        # cv2.putText(output_image, text, org=(int(text_location[0]), int(text_location[3])),
                        #             fontFace=cv2.FONT_HERSHEY_COMPLEX, thickness=2, fontScale=0.5,
                        #             color=(255, 0, 0))
                        # cv2.putText(output_image, text, org=(int(bbox[0]), int(bbox[1])),
                        #             fontFace=cv2.FONT_HERSHEY_COMPLEX, thickness=1, fontScale=0.5,
                        #             color=color)

                        # show the histgram for predicted codes
                        # fig = plt.figure()
                        # plt.plot(np.arange(cfg.n_codes), c_.reshape((-1,)), color='green',
                        #          marker='o', linestyle='dashed', linewidth=2, markersize=6)
                        # plt.ylabel('Value of each coefficient')
                        # plt.xlabel('All predicted {} coefficients'.format(cfg.n_codes))
                        # plt.title('Distribution of the predicted coefficients for {}'.format(text))
                        # plt.show()

            value = [255, 255, 255]
            dst_img = cv2.addWeighted(output_image, 0.5, blend_mask, 0.5, 0)
            dst_img[blend_mask == 0] = output_image[blend_mask == 0]
            img_original = cv2.copyMakeBorder(img_original, 0, 0, 0, 10,
                                              cv2.BORDER_CONSTANT, None, value)
            img_connect = cv2.copyMakeBorder(img_connect, 0, 0, 10, 10,
                                             cv2.BORDER_CONSTANT, None, value)
            img_recon = cv2.copyMakeBorder(img_recon, 0, 0, 10, 10,
                                           cv2.BORDER_CONSTANT, None, value)
            dst_img = cv2.copyMakeBorder(dst_img, 0, 0, 10, 0,
                                         cv2.BORDER_CONSTANT, None, value)
            im_cat = np.concatenate(
                (img_original, img_connect, img_recon, dst_img), axis=1)
            # im_cat = np.concatenate((img_original, img_connect, img_recon), axis=1)
            cv2.imshow('GT:Resample:Recons:Predict', im_cat)
            if cv2.waitKey() & 0xFF == ord('q'):
                break
Exemplo n.º 2
0
    def __getitem__(self, index):
        img_id = self.images[index]
        img_path = os.path.join(
            self.img_dir,
            self.coco.loadImgs(ids=[img_id])[0]['file_name'])
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        annotations = self.coco.loadAnns(ids=ann_ids)
        img = self.coco.loadImgs(ids=[img_id])[0]
        w_img = int(img['width'])
        h_img = int(img['height'])

        labels = []
        bboxes = []
        shapes = []

        for anno in annotations:
            if anno['iscrowd'] == 1:  # Excludes crowd objects
                continue

            polygons = get_connected_polygon_using_mask(
                anno['segmentation'], (h_img, w_img),
                n_vertices=self.n_vertices,
                closing_max_kernel=50)

            gt_x1, gt_y1, gt_w, gt_h = anno['bbox']
            contour = np.array(polygons).reshape((-1, 2))

            # Downsample the contour to fix number of vertices
            if len(contour) > self.n_vertices:
                fixed_contour = resample(contour, num=self.n_vertices)
            else:
                fixed_contour = turning_angle_resample(contour,
                                                       self.n_vertices)

            fixed_contour[:, 0] = np.clip(fixed_contour[:, 0], gt_x1,
                                          gt_x1 + gt_w)
            fixed_contour[:, 1] = np.clip(fixed_contour[:, 1], gt_y1,
                                          gt_y1 + gt_h)

            contour_std = np.sqrt(np.sum(np.std(fixed_contour, axis=0)**2))
            if contour_std < 1e-6 or contour_std == np.inf or contour_std == np.nan:  # invalid shapes
                continue

            updated_bbox = [
                np.min(fixed_contour[:, 0]),
                np.min(fixed_contour[:, 1]),
                np.max(fixed_contour[:, 0]),
                np.max(fixed_contour[:, 1])
            ]

            shapes.append(np.ndarray.flatten(fixed_contour).tolist())
            labels.append(self.cat_ids[anno['category_id']])
            bboxes.append(updated_bbox)

        labels = np.array(labels)
        bboxes = np.array(bboxes, dtype=np.float32)
        shapes = np.array(shapes, dtype=np.float32)

        if len(bboxes) == 0:
            bboxes = np.array([[0., 0., 0., 0.]], dtype=np.float32)
            labels = np.array([[0]])
            shapes = np.zeros((1, self.n_vertices * 2), dtype=np.float32)
        # bboxes[:, 2:] += bboxes[:, :2]  # xywh to xyxy

        img = cv2.imread(img_path)
        height, width = img.shape[0], img.shape[1]
        center = np.array([width / 2., height / 2.],
                          dtype=np.float32)  # center of image
        scale = max(height, width) * 1.0

        flipped = False
        if self.split == 'train':
            scale = scale * np.random.choice(self.rand_scales)
            w_border = get_border(160, width)
            h_border = get_border(160, height)
            center[0] = np.random.randint(low=w_border, high=width - w_border)
            center[1] = np.random.randint(low=h_border, high=height - h_border)

            if np.random.random() < 0.5:
                flipped = True
                img = img[:, ::-1, :]
                center[0] = width - center[0] - 1

        trans_img = get_affine_transform(
            center, scale, 0, [self.img_size['w'], self.img_size['h']])
        img = cv2.warpAffine(img, trans_img,
                             (self.img_size['w'], self.img_size['h']))

        # -----------------------------------debug---------------------------------
        # image_show = img.copy()
        # for bbox, label in zip(bboxes, labels):
        #   if flipped:
        #     bbox[[0, 2]] = width - bbox[[2, 0]] - 1
        #   bbox[:2] = affine_transform(bbox[:2], trans_img)
        #   bbox[2:] = affine_transform(bbox[2:], trans_img)
        #   bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, self.img_size['w'] - 1)
        #   bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, self.img_size['h'] - 1)
        #   cv2.rectangle(image_show, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 0, 0), 2)
        #   cv2.putText(image_show, self.class_name[label + 1], (int(bbox[0]), int(bbox[1])),
        #               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
        # cv2.imshow('img', image_show)
        # cv2.waitKey()
        # -----------------------------------debug---------------------------------

        img = img.astype(np.float32) / 255.

        if self.split == 'train':
            color_aug(self.data_rng, img, self.eig_val, self.eig_vec)

        img -= self.mean
        img /= self.std
        img = img.transpose(2, 0, 1)  # from [H, W, C] to [C, H, W]

        trans_fmap = get_affine_transform(
            center, scale, 0, [self.fmap_size['w'], self.fmap_size['h']])

        hmap = np.zeros(
            (self.num_classes, self.fmap_size['h'], self.fmap_size['w']),
            dtype=np.float32)  # heatmap
        w_h_ = np.zeros((self.max_objs, 2),
                        dtype=np.float32)  # width and height of bboxes
        shapes_ = np.zeros((self.max_objs, self.n_vertices * 2),
                           dtype=np.float32)  # gt amodal segmentation polygons
        center_offsets = np.zeros(
            (self.max_objs, 2),
            dtype=np.float32)  # gt mass centers to bbox center
        codes_ = np.zeros((self.max_objs, self.n_codes), dtype=np.float32)
        contour_std_ = np.zeros(
            (self.max_objs, 1),
            dtype=np.float32)  # keep track of codes that is activated
        regs = np.zeros(
            (self.max_objs, 2),
            dtype=np.float32)  # regression for offsets of shape center
        inds = np.zeros((self.max_objs, ), dtype=np.int64)
        ind_masks = np.zeros((self.max_objs, ), dtype=np.uint8)

        for k, (bbox, label, shape) in enumerate(zip(bboxes, labels, shapes)):
            if flipped:
                bbox[[0, 2]] = width - bbox[[2, 0]] - 1
                # Flip the contour x-axis
                for m in range(self.n_vertices):
                    shape[2 * m] = width - shape[2 * m] - 1

            bbox[:2] = affine_transform(bbox[:2], trans_fmap)
            bbox[2:] = affine_transform(bbox[2:], trans_fmap)
            bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, self.fmap_size['w'] - 1)
            bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, self.fmap_size['h'] - 1)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]

            # generate gt shape mean and std from contours
            for m in range(self.n_vertices
                           ):  # apply scale and crop transform to shapes
                shape[2 * m:2 * m + 2] = affine_transform(
                    shape[2 * m:2 * m + 2], trans_fmap)

            shape_clipped = np.reshape(shape, (self.n_vertices, 2))

            shape_clipped[:, 0] = np.clip(shape_clipped[:, 0], 0,
                                          self.fmap_size['w'] - 1)
            shape_clipped[:, 1] = np.clip(shape_clipped[:, 1], 0,
                                          self.fmap_size['h'] - 1)

            clockwise_flag = check_clockwise_polygon(shape_clipped)
            if not clockwise_flag:
                fixed_contour = np.flip(shape_clipped, axis=0)
            else:
                fixed_contour = shape_clipped.copy()
            # Indexing from the left-most vertex, argmin x-axis
            idx = np.argmin(fixed_contour[:, 0])
            indexed_shape = np.concatenate(
                (fixed_contour[idx:, :], fixed_contour[:idx, :]), axis=0)

            mass_center = np.mean(indexed_shape, axis=0)
            contour_std = np.std(indexed_shape, axis=0) + 1e-4
            if h < 1e-6 or w < 1e-6:  # remove small bboxes
                continue

            # centered_shape = indexed_shape - mass_center
            norm_shape = (indexed_shape - mass_center) / np.sqrt(
                np.sum(contour_std**2))

            if h > 0 and w > 0:
                obj_c = np.array([(bbox[0] + bbox[2]) / 2,
                                  (bbox[1] + bbox[3]) / 2],
                                 dtype=np.float32)
                # obj_c = mass_center
                obj_c_int = obj_c.astype(np.int32)

                radius = max(
                    0,
                    int(
                        gaussian_radius((math.ceil(h), math.ceil(w)),
                                        self.gaussian_iou)))
                draw_umich_gaussian(hmap[label], obj_c_int, radius)
                shapes_[k] = norm_shape.reshape((1, -1))
                center_offsets[k] = mass_center - obj_c
                codes_[k], _ = fast_ista(norm_shape.reshape((1, -1)),
                                         self.dictionary,
                                         lmbda=self.sparse_alpha,
                                         max_iter=60)
                contour_std_[k] = np.sqrt(np.sum(contour_std**2))

                w_h_[k] = 1. * w, 1. * h
                # w_h_[k] = mass_center[1] - bbox[1], bbox[3] - mass_center[1], \
                #           mass_center[0] - bbox[0], bbox[2] - mass_center[0]  # [top, bottom, left, right] distance
                regs[k] = obj_c - obj_c_int  # discretization error
                inds[k] = obj_c_int[1] * self.fmap_size['w'] + obj_c_int[0]
                ind_masks[k] = 1

        return {
            'image': img,
            'shapes': shapes_,
            'codes': codes_,
            'offsets': center_offsets,
            'std': contour_std_,
            'hmap': hmap,
            'w_h_': w_h_,
            'regs': regs,
            'inds': inds,
            'ind_masks': ind_masks,
            'c': center,
            's': scale,
            'img_id': img_id
        }