Exemplo n.º 1
0
def train(log_dir, args):
	save_dir = os.path.join(log_dir, 'pretrained/')
	checkpoint_path = os.path.join(save_dir, 'model.ckpt')
	input_path = os.path.join(args.base_dir, args.input)
	plot_dir = os.path.join(log_dir, 'plots')
	os.makedirs(plot_dir, exist_ok=True)
	log('Checkpoint path: {}'.format(checkpoint_path))
	log('Loading training data from: {}'.format(input_path))
	log('Using model: {}'.format(args.model))
	log(hparams_debug_string())

	#Set up data feeder
	coord = tf.train.Coordinator()
	with tf.variable_scope('datafeeder') as scope:
		feeder = Feeder(coord, input_path, hparams)

	#Set up model:
	step_count = 0
	try:
		#simple text file to keep count of global step
		with open(os.path.join(log_dir, 'step_counter.txt'), 'r') as file:
			step_count = int(file.read())
	except:
		print('no step_counter file found, assuming there is no saved checkpoint')

	global_step = tf.Variable(step_count, name='global_step', trainable=False)
	with tf.variable_scope('model') as scope:
		model = create_model(args.model, hparams)
		model.initialize(feeder.inputs, feeder.input_lengths, feeder.mel_targets, feeder.token_targets)
		model.add_loss()
		model.add_optimizer(global_step)
		stats = add_stats(model)

	#Book keeping
	step = 0
	time_window = ValueWindow(100)
	loss_window = ValueWindow(100)
	saver = tf.train.Saver(max_to_keep=5)

	#Memory allocation on the GPU as needed
	config = tf.ConfigProto()
	config.gpu_options.allow_growth = True

	#Train
	with tf.Session(config=config) as sess:
		try:
			summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
			sess.run(tf.global_variables_initializer())

			#saved model restoring
			if args.restore:
				#Restore saved model if the user requested it, Default = True.
				try:
					checkpoint_state = tf.train.get_checkpoint_state(save_dir)
				except tf.errors.OutOfRangeError as e:
					log('Cannot restore checkpoint: {}'.format(e))

			if (checkpoint_state and checkpoint_state.model_checkpoint_path):
				log('Loading checkpoint {}'.format(checkpoint_state.model_checkpoint_path))
				saver.restore(sess, checkpoint_state.model_checkpoint_path)

			else:
				if not args.restore:
					log('Starting new training!')
				else:
					log('No model to load at {}'.format(save_dir))

			#initiating feeder
			feeder.start_in_session(sess)

			#Training loop
			while not coord.should_stop():
				start_time = time.time()
				step, loss, opt = sess.run([global_step, model.loss, model.optimize])
				time_window.append(time.time() - start_time)
				loss_window.append(loss)
				message = 'Step {:7d} [{:.3f} sec/step, loss={:.5f}, avg_loss={:.5f}]'.format(
					step, time_window.average, loss, loss_window.average)
				log(message, end='\r')

				if loss > 100 or np.isnan(loss):
					log('Loss exploded to {:.5f} at step {}'.format(loss, step))
					raise Exception('Loss exploded')

				if step % args.summary_interval == 0:
					log('\nWriting summary at step: {}'.format(step))
					summary_writer.add_summary(sess.run(stats), step)
				
				if step % args.checkpoint_interval == 0:
					with open(os.path.join(log_dir,'step_counter.txt'), 'w') as file:
						file.write(str(step))
					log('Saving checkpoint to: {}-{}'.format(checkpoint_path, step))
					saver.save(sess, checkpoint_path, global_step=step)
					# Unlike the original tacotron, we won't save audio
					# because we yet have to use wavenet as vocoder
					log('Saving alignement and Mel-Spectrograms..')
					input_seq, prediction, alignment, target = sess.run([model.inputs[0],
							 model.mel_outputs[0],
							 model.alignments[0],
							 model.mel_targets[0],
							 ])
					#save predicted spectrogram to disk (for plot and manual evaluation purposes)
					mel_filename = 'ljspeech-mel-prediction-step-{}.npy'.format(step)
					np.save(os.path.join(log_dir, mel_filename), prediction, allow_pickle=False)

					#save alignment plot to disk (control purposes)
					plot.plot_alignment(alignment, os.path.join(plot_dir, 'step-{}-align.png'.format(step)),
						info='{}, {}, step={}, loss={:.5f}'.format(args.model, time_string(), step, loss))
					#save real mel-spectrogram plot to disk (control purposes)
					plot.plot_spectrogram(target, os.path.join(plot_dir, 'step-{}-real-mel-spectrogram.png'.format(step)),
						info='{}, {}, step={}, Real'.format(args.model, time_string(), step, loss))
					#save predicted mel-spectrogram plot to disk (control purposes)
					plot.plot_spectrogram(prediction, os.path.join(plot_dir, 'step-{}-pred-mel-spectrogram.png'.format(step)),
						info='{}, {}, step={}, loss={:.5}'.format(args.model, time_string(), step, loss))
					log('Input at step {}: {}'.format(step, sequence_to_text(input_seq)))

		except Exception as e:
			log('Exiting due to exception: {}'.format(e), slack=True)
			traceback.print_exc()
			coord.request_stop(e)
def train(log_dir, args):
    save_dir = os.path.join(log_dir, 'pretrained/')
    checkpoint_path = os.path.join(save_dir, 'model.ckpt')
    input_path = os.path.join(args.base_dir, args.input)
    log('Checkpoint path: {}'.format(checkpoint_path))
    log('Loading training data from: {}'.format(input_path))
    log('Using model: {}'.format(args.model))
    log(hparams_debug_string())

    #Set up feeder
    coord = tf.train.Coordinator()
    with tf.variable_scope('datafeeder') as scope:
        feeder = Feeder(coord, input_path, hparams)

    #Set up model
    step_count = 0
    try:
        #simple text file to keep count of global step
        with open(os.path.join(log_dir, 'step_counter.txt'), 'r') as file:
            step_count = int(file.read())
    except:
        print(
            'no step_counter file found, assuming there is no saved checkpoint'
        )

    global_step = tf.Variable(step_count, name='global_step', trainable=False)
    with tf.variable_scope('model') as scope:
        model = create_model(args.model, hparams)
        model.initialize(feeder.inputs, feeder.input_lengths,
                         feeder.mel_targets)
        model.add_loss()
        model.add_optimizer(global_step)
        stats = add_stats(model)

    #Book keeping
    step = 0
    time_window = ValueWindow(100)
    loss_window = ValueWindow(100)
    saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

    #Memory allocation on the GPU as needed
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    #Train
    with tf.Session(config=config) as sess:
        try:
            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
            sess.run(tf.global_variables_initializer())

            #saved model restoring
            if args.restore:
                #Restore saved model if the user requested it, Default = True.
                try:
                    checkpoint_state = tf.train.get_checkpoint_state(log_dir)
                except tf.errors.OutOfRangeError as e:
                    log('Cannot restore checkpoint: {}'.format(e))

            if (checkpoint_state and checkpoint_state.model_checkpoint_path):
                log('Loading checkpoint {}'.format(
                    checkpoint_state.model_checkpoint_path))
                saver.restore(sess, checkpoint_state.model_checkpoint_path)

            else:
                if not args.restore:
                    log('Starting new training!')
                else:
                    log('No model to load at {}'.format(save_dir))

            #initiating feeder
            feeder.start_in_session(sess)

            #Training loop
            while not coord.should_stop():
                start_time = time.time()
                step, loss, opt = sess.run(
                    [global_step, model.loss, model.optimize])
                time_window.append(time.time() - start_time)
                loss_window.append(loss)

                message = 'Step {:7d} [{:.3f} sec/step, loss={:.5f}, avg_loss={:.5f}]'.format(
                    step, time_window.average, loss, loss_window.average)
                log(message, end='\r')

                if loss > 100 or np.isnan(loss):
                    log('Loss exploded to {:.5f} at step {}'.format(
                        loss, step))
                    raise Exception('Loss exploded')

                if step % args.summary_interval == 0:
                    log('\nWriting summary at step: {}'.format(step))
                    summary_writer.add_summary(sess.run(stats), step)

                if step % args.checkpoint_interval == 0:
                    with open(os.path.join(log_dir, 'step_counter.txt'),
                              'w') as file:
                        file.write(str(step))
                    log('Saving checkpoint to: {}-{}'.format(
                        checkpoint_path, step))
                    saver.save(sess, checkpoint_path, global_step=step)

                    input_seq, prediction = sess.run(
                        [model.inputs[0], model.output[0]])
                    #Save an example prediction at this step
                    log('Input at step {}: {}'.format(
                        step, sequence_to_text(input_seq)))
                    log('Model prediction: {}'.format(
                        class_to_str(prediction)))

        except Exception as e:
            log('Exiting due to exception: {}'.format(e), slack=True)
            traceback.print_exc()
            coord.request_stop(e)