Exemplo n.º 1
0
class TextProposalConnector:
    def __init__(self):
        self.graph_builder = TextProposalGraphBuilder()

    def group_text_proposals(self, text_proposals, scores, im_size):
        graph = self.graph_builder.build_graph(text_proposals, scores, im_size)
        return graph.sub_graphs_connected()

    def fit_y(self, X, Y, x1, x2):
        len(X) != 0
        # if X only include one point, the function will get line y=Y[0]
        if np.sum(X == X[0]) == len(X):
            return Y[0], Y[0]
        p = np.poly1d(np.polyfit(X, Y, 1))
        return p(x1), p(x2)

    def get_text_lines(self, text_proposals, scores, im_size):
        # tp=text proposal
        tp_groups = self.group_text_proposals(text_proposals, scores, im_size)
        text_lines = np.zeros((len(tp_groups), 5), np.float32)

        for index, tp_indices in enumerate(tp_groups):
            text_line_boxes = text_proposals[list(tp_indices)]

            x0 = np.min(text_line_boxes[:, 0])
            x1 = np.max(text_line_boxes[:, 2])

            offset = (text_line_boxes[0, 2] - text_line_boxes[0, 0]) * 0.5

            lt_y, rt_y = self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 1], x0 + offset, x1 - offset)
            lb_y, rb_y = self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 3], x0 + offset, x1 - offset)

            # the score of a text line is the average score of the scores
            # of all text proposals contained in the text line
            score = scores[list(tp_indices)].sum() / float(len(tp_indices))

            text_lines[index, 0] = x0
            text_lines[index, 1] = min(lt_y, rt_y)
            text_lines[index, 2] = x1
            text_lines[index, 3] = max(lb_y, rb_y)
            text_lines[index, 4] = score

        text_lines = clip_boxes(text_lines, im_size)

        text_recs = np.zeros((len(text_lines), 9), np.float)
        index = 0
        for line in text_lines:
            xmin, ymin, xmax, ymax = line[0], line[1], line[2], line[3]
            text_recs[index, 0] = xmin
            text_recs[index, 1] = ymin
            text_recs[index, 2] = xmax
            text_recs[index, 3] = ymin
            text_recs[index, 4] = xmax
            text_recs[index, 5] = ymax
            text_recs[index, 6] = xmin
            text_recs[index, 7] = ymax
            text_recs[index, 8] = line[4]
            index = index + 1

        return text_recs
Exemplo n.º 2
0
class TextProposalConnector:
    """
        Connect text proposals into text lines
    """

    def __init__(self):
        self.graph_builder = TextProposalGraphBuilder()

    def group_text_proposals(self, text_proposals, scores, im_size):
        graph = self.graph_builder.build_graph(text_proposals, scores, im_size)
        return graph.sub_graphs_connected()

    def fit_y(self, X, Y, x1, x2):
        len(X) != 0
        # if X only include one point, the function will get line y=Y[0]
        if np.sum(X == X[0]) == len(X):
            return Y[0], Y[0]
        p = np.poly1d(np.polyfit(X, Y, 1))
        return p(x1), p(x2)

    def get_text_lines(self, text_proposals, scores, im_size):
        """
        text_proposals:boxes
        
        """
        # tp=text proposal
        tp_groups = self.group_text_proposals(text_proposals, scores, im_size)  # 首先还是建图,获取到文本行由哪几个小框构成

        text_lines = np.zeros((len(tp_groups), 8), np.float32)

        for index, tp_indices in enumerate(tp_groups):
            text_line_boxes = text_proposals[list(tp_indices)]  # 每个文本行的全部小框
            X = (text_line_boxes[:, 0] + text_line_boxes[:, 2]) / 2  # 求每一个小框的中心x,y坐标
            Y = (text_line_boxes[:, 1] + text_line_boxes[:, 3]) / 2

            z1 = np.polyfit(X, Y, 1)  # 多项式拟合,根据之前求的中心店拟合一条直线(最小二乘)

            x0 = np.min(text_line_boxes[:, 0])  # 文本行x坐标最小值
            x1 = np.max(text_line_boxes[:, 2])  # 文本行x坐标最大值

            offset = (text_line_boxes[0, 2] - text_line_boxes[0, 0]) * 0.5  # 小框宽度的一半

            # 以全部小框的左上角这个点去拟合一条直线,然后计算一下文本行x坐标的极左极右对应的y坐标
            lt_y, rt_y = self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 1], x0 + offset, x1 - offset)
            # 以全部小框的左下角这个点去拟合一条直线,然后计算一下文本行x坐标的极左极右对应的y坐标
            lb_y, rb_y = self.fit_y(text_line_boxes[:, 0], text_line_boxes[:, 3], x0 + offset, x1 - offset)

            score = scores[list(tp_indices)].sum() / float(len(tp_indices))  # 求全部小框得分的均值作为文本行的均值
            
            text_lines[index, 0] = x0
            text_lines[index, 1] = min(lt_y, rt_y)  # 文本行上端 线段 的y坐标的小值
            text_lines[index, 2] = x1
            text_lines[index, 3] = max(lb_y, rb_y)  # 文本行下端 线段 的y坐标的大值
            text_lines[index, 4] = score  # 文本行得分
            text_lines[index, 5] = z1[0]  # 根据中心点拟合的直线的k,b
            text_lines[index, 6] = z1[1]
            height = np.mean((text_line_boxes[:, 3] - text_line_boxes[:, 1]))  # 小框平均高度
            text_lines[index, 7] = height + 2.5

        text_recs = np.zeros((len(text_lines), 9), np.float)
        index = 0
        for line in text_lines:
            b1 = line[6] - line[7] / 2  # 根据高度和文本行中心线,求取文本行上下两条线的b值
            b2 = line[6] + line[7] / 2
            x1 = line[0]
            y1 = line[5] * line[0] + b1  # 左上
            x2 = line[2]
            y2 = line[5] * line[2] + b1  # 右上
            x3 = line[0]
            y3 = line[5] * line[0] + b2  # 左下
            x4 = line[2]
            y4 = line[5] * line[2] + b2  # 右下
            disX = x2 - x1
            disY = y2 - y1
            width = np.sqrt(disX * disX + disY * disY)  # 文本行宽度

            fTmp0 = y3 - y1  # 文本行高度
            fTmp1 = fTmp0 * disY / width
            x = np.fabs(fTmp1 * disX / width)  # 做补偿
            y = np.fabs(fTmp1 * disY / width)
            if line[5] < 0:
                x1 -= x
                y1 += y
                x4 += x
                y4 -= y
            else:
                x2 += x
                y2 += y
                x3 -= x
                y3 -= y
            text_recs[index, 0] = x1
            text_recs[index, 1] = y1
            text_recs[index, 2] = x2
            text_recs[index, 3] = y2
            text_recs[index, 4] = x4
            text_recs[index, 5] = y4
            text_recs[index, 6] = x3
            text_recs[index, 7] = y3
            text_recs[index, 8] = line[4]
            index = index + 1

        return text_recs
Exemplo n.º 3
0
 def __init__(self):
     self.graph_builder = TextProposalGraphBuilder()