Exemplo n.º 1
0
def evaluate(model, valid_dataloader, ids_valid):
    print("| -- Get Best Threshold from Validation Dataset -- |")

    model.eval()
    valid_preds = []
    valid_masks = []
    valid_indexs = []
    for inputs, labels, indexs in tqdm(valid_dataloader):
        inputs = cuda(inputs)
        labels = cuda(labels)

        logits = model(inputs)  # no torch.sigmoid
        logits = to_numpy(logits)

        valid_preds.append(logits)
        valid_masks.append(labels)
        valid_indexs.append(list(indexs))

    valid_preds = np.vstack(valid_preds)[:, 0, :, :]
    valid_masks = np.vstack(valid_masks)[:, 0, :, :]
    valid_preds = un_puzzle_pad(valid_preds)
    valid_masks = un_puzzle_pad(valid_masks)

    # all_valid_preds = np.vstack(all_valid_preds)
    # all_valid_masks = np.vstack(all_valid_masks)
    # all_valid_indexs = sum(all_valid_indexs, [])
    # print(all_valid_preds.shape)
    # print(all_valid_masks.shape)
    # print(set(all_valid_indexs) - set(ids_trains))

    best_threshold = get_best_threshold(valid_preds, valid_masks, ids_valid)

    return best_threshold
Exemplo n.º 2
0
def evaluate2(model, valid_dataloader, ids_valid):
    print("| -- Get Best Threshold from Validation Dataset -- |")

    model.eval()
    valid_preds = []
    valid_masks = []
    valid_indexs = []
    for inputs, labels, nemptys, indexs in tqdm(valid_dataloader):
        inputs = cuda(inputs)
        labels = cuda(labels)

        logit_fuse, logit_pixel, logit_image = model(inputs)
        logit_fuse = to_numpy(logit_fuse)

        valid_preds.append(logit_fuse)
        valid_masks.append(labels)
        valid_indexs.append(list(indexs))

    valid_preds = np.vstack(valid_preds)[:, 0, :, :]
    valid_masks = np.vstack(valid_masks)[:, 0, :, :]
    valid_preds = un_puzzle_pad(valid_preds)
    valid_masks = un_puzzle_pad(valid_masks)

    best_threshold = get_best_threshold(valid_preds, valid_masks, ids_valid)

    return best_threshold
Exemplo n.º 3
0
def train2(model, train_dataloader, epoch, num_epochs, optimizer):
    model.train()

    train_loss = []
    train_iout = []
    train_iout2 = []
    train_iout3 = []
    for batch_idx, (inputs, labels, nemptys,
                    indexs) in enumerate(train_dataloader):

        inputs = cuda(inputs)
        with torch.no_grad():
            nemptys = Variable(nemptys).type(torch.cuda.FloatTensor)
            labels = cuda(labels)

        optimizer.zero_grad()

        logit_fuse, logit_pixel, logit_image = model(inputs)
        preds_fuse = torch.sigmoid(logit_fuse)
        preds_image = torch.sigmoid(logit_image)

        truth_pixel, truth_image = labels, nemptys
        loss_fuse, loss_pixel, loss_image = dscriterion(
            logit_fuse, logit_pixel, logit_image, truth_pixel, truth_image)

        preds_image = preds_image.view(-1, 1, 1, 1)
        # preds_pixel = torch.mul(logit_pixel, (preds_image > 0.5).float())
        preds_fuse2 = torch.mul(preds_fuse, (preds_image > 0.5).float())

        iout = get_iou_vector((logit_fuse > 0), labels)  # TODO
        # iout2 = get_iou_vector((preds_pixel > 0), labels)
        iout2 = get_iou_vector((preds_fuse > 0.5), labels)
        iout3 = get_iou_vector((preds_fuse2 > 0.5), labels)

        loss = loss_fuse + loss_pixel + loss_image
        loss.backward()
        # loss_pixel.backward(retain_graph=True)
        # loss_image.backward()
        optimizer.step()

        train_loss.append(to_item(loss))
        train_iout.append(to_item(iout))
        train_iout2.append(to_item(iout2))
        train_iout3.append(to_item(iout3))

        sys.stdout.write('\r')
        sys.stdout.write(
            f'| Epoch [{epoch:3d}/{num_epochs:3d}] '
            f'Iter[{(batch_idx + 1):3d}/{len(train_dataloader):3d}]\t\t'
            f'Loss: {np.mean(train_loss):.4f} '
            f'{np.mean(train_iout):.4f} '
            f'{np.mean(train_iout2):.4f} '
            f'{np.mean(train_iout3):.4f}')
        sys.stdout.flush()
    print()
    metrics = {
        'train_loss': np.mean(train_loss),
        'train_iout': np.mean(train_iout)
    }
    return metrics
Exemplo n.º 4
0
def evaluate(model, valid_dataloader, epoch, criterion, is_finetune):
    with torch.no_grad():
        model.eval()
        valid_loss = []
        valid_iout = []
        for inputs, labels, nemptys, indexs in valid_dataloader:
            inputs = cuda(inputs)
            labels = cuda(labels)

            logits = model(inputs)
            preds = torch.sigmoid(logits)

            loss = criterion(logits, labels)

            if not is_finetune:
                iout = get_iou_vector((preds > 0.5), labels)
            else:
                iout = get_iou_vector((logits > 0), labels)

            valid_loss.append(to_item(loss))
            valid_iout.append(to_item(iout))

        print(f'| Validation Epoch #{epoch}\t\t\t'
              f'Valid Loss: {np.mean(valid_loss):.4f} '
              f'Valid IoUT: {np.mean(valid_iout):.4f}')

        metrics = {
            'valid_loss': np.mean(valid_loss),
            'valid_iout': np.mean(valid_iout)
        }
        return metrics
Exemplo n.º 5
0
def evaluate2(model, valid_dataloader, epoch):
    with torch.no_grad():
        model.eval()
        valid_loss = []
        valid_iout = []
        valid_iout2 = []
        valid_iout3 = []
        for inputs, labels, nemptys, indexs in valid_dataloader:
            inputs = cuda(inputs)
            nemptys = Variable(nemptys).type(torch.cuda.FloatTensor)
            labels = cuda(labels)

            logit_fuse, logit_pixel, logit_image = model(inputs)
            preds_fuse = torch.sigmoid(logit_fuse)
            preds_image = torch.sigmoid(logit_image)

            truth_pixel, truth_image = labels, nemptys
            loss_fuse, loss_pixel, loss_image = dscriterion(
                logit_fuse, logit_pixel, logit_image, truth_pixel, truth_image)

            preds_image = preds_image.view(-1, 1, 1, 1)
            # preds_pixel = torch.mul(logit_pixel, (preds_image > 0.5).float())
            preds_fuse2 = torch.mul(preds_fuse, (preds_image > 0.5).float())

            iout = get_iou_vector((logit_fuse > 0), labels)
            # iout2 = get_iou_vector((preds_pixel > 0), labels)
            iout2 = get_iou_vector((preds_fuse > 0.5), labels)
            iout3 = get_iou_vector((preds_fuse2 > 0.5), labels)

            loss = loss_fuse + loss_pixel + loss_image

            valid_loss.append(to_item(loss))
            valid_iout.append(to_item(iout))
            valid_iout2.append(to_item(iout2))
            valid_iout3.append(to_item(iout3))

        print(f'| Validation Epoch #{epoch}\t\t\t'
              f'Valid Loss: {np.mean(valid_loss):.4f} '
              f'Valid IoUT: {np.mean(valid_iout):.4f} '
              f'Valid IoUT2: {np.mean(valid_iout2):.4f} '
              f'Valid IoUT3: {np.mean(valid_iout3):.4f}')

        metrics = {
            'valid_loss': np.mean(valid_loss),
            'valid_iout': np.mean(valid_iout)
        }
        return metrics
Exemplo n.º 6
0
def train_fold(train_df, ids_trains, train_dir, batch_size, n_fold, phase):
    # Create train/validation split stratified by salt coverage
    skf = StratifiedKFold(n_splits=8, shuffle=True, random_state=1234)

    for fold, (train_idx, valid_idx) in enumerate(
            skf.split(ids_trains, train_df.coverage_class)):
        ids_train, ids_valid = ids_trains[train_idx], ids_trains[valid_idx]

        if n_fold != -1 and fold != n_fold:
            continue

        histall = histcoverage(train_df.coverage_class[ids_train].values)
        histall_valid = histcoverage(train_df.coverage_class[ids_valid].values)
        print(f"fold: {fold}\n"
              f"train size: {len(ids_train)}\n"
              f"number of each mask class: {histall}\n"
              f"valid size: {len(ids_valid)}\n"
              f"number of each mask class: {histall_valid}")

        train_dataset = TGSSaltDataset(
            train_dir, ids_train, transform, mode='train')
        valid_dataset = TGSSaltDataset(
            train_dir, ids_valid, None, mode='train')

        train_dataloader = data.DataLoader(
            train_dataset,
            batch_size=batch_size,
            shuffle=True,
            drop_last=True,
            num_workers=0,
            pin_memory=True)
        valid_dataloader = data.DataLoader(
            valid_dataset,
            batch_size=batch_size,
            shuffle=False,
            drop_last=False,
            num_workers=0,
            pin_memory=True)
        # imshow_example(train_dataloader)
        # exit()

        model = unet_models.DeepSupervision50(pretrained=True)
        print(sum(p.numel() for p in model.parameters()))
        model = cuda(model)

        if phase == "train2":
            train_model2(model, train_dataloader, valid_dataloader, fold=fold)
        elif phase == "train":
            train_model(model, train_dataloader, valid_dataloader, fold=fold)
        elif phase == "finetune":
            finetune(model, train_dataloader, valid_dataloader, fold=fold)
        elif phase == "finetune2":
            finetune2(model, train_dataloader, valid_dataloader, fold=fold)
Exemplo n.º 7
0
def predict(model, test_dataloader):
    print("| -- Predict on Test Dataset -- |")

    model.eval()
    test_preds = []
    test_indexs = []
    for inputs, indexs in tqdm(test_dataloader):
        inputs = cuda(inputs)

        logits1 = model(inputs)
        logits2 = flip_tensor_lr(model(flip_tensor_lr(inputs)))  # TTA
        logits = [logits1, logits2]
        logits = torch.mean(torch.stack(logits, 0), 0)
        logits = to_numpy(logits)

        test_preds.append(logits)
        test_indexs.append(indexs)

    test_preds = np.vstack(test_preds)[:, 0, :, :]
    test_preds = un_puzzle_pad(test_preds)

    return test_preds
Exemplo n.º 8
0
def infer(ids_test, test_dir, batch_size):
    print(f"ids_test: {len(ids_test)}\n{ids_test[:10]}")
    test_dataset = TGSSaltDataset(test_dir, ids_test, None, mode='test')
    test_dataloader = data.DataLoader(
        test_dataset,
        batch_size=batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=0,
        pin_memory=True)

    def get_all_test_preds(model, best_model_paths, file_path):
        if os.path.exists(file_path):
            print(f"Load {file_path}")
            all_test_preds = np.load(file_path)
            return all_test_preds

        n = len(best_model_paths)
        all_test_preds = np.zeros((n, 18000, img_size_ori, img_size_ori))

        for i, path in enumerate(best_model_paths):
            model, _, _ = load_state(model, path)
            # best_threshold = evaluate2(model, valid_dataloader, ids_valid)
            test_preds = predict2(model, test_dataloader)  # predict
            all_test_preds[i] = test_preds
        all_test_preds = all_test_preds.mean(axis=0)
        np.save(file_path, all_test_preds)
        return all_test_preds

    model = unet_models.DeepSupervision50(pretrained=True)
    model = cuda(model)

    all_test_preds = []

    # load save npys
    best_mean_npys = [
        "result/0929/finetune_meanfold.npy",
        # "result/0929/finetune2_fold0.npy",
        # "result/0929/finetune2_fold1.npy",
        # "result/0929/finetune2_fold2.npy",
        # "result/0929/finetune2_fold3.npy",
        # "result/0929/finetune2_fold4.npy",
        "result/0929/finetune2_01234.npy",
        "result/1002/finetune_meanfold.npy",
        # "result/1002/finetune2_fold0.npy",
        # "result/1002/finetune2_fold1.npy",
        # "result/1002/finetune2_fold2.npy",
        # "result/1002/finetune2_fold3.npy",
        # "result/1002/finetune2_fold4.npy",
        # "result/1002/finetune2_fold5.npy",
        # "result/1002/finetune2_fold6.npy",
        # "result/1002/finetune2_fold8.npy",
        # "result/1002/finetune2_fold9.npy",
        "result/1002/finetune2_012345689.npy",
        "result/1009/best_model_0.npy",
        "result/1009/best_model_1.npy",
        "result/1009/best_model_2.npy",
        "result/1009/best_model_3.npy",
        "result/1009/best_model_5.npy",
        "result/1009/best_model_6.npy",
        "result/1009/best_model_7.npy",
    ]
    for npy in best_mean_npys:
        test_preds = np.load(npy)
        all_test_preds.append(test_preds)

    # load and save train2 model
    # best_model_paths = []
    # for fold in [0, 1, 2, 3, 5, 6, 7]:
    #     best_model_paths.append(f"model/best_model_{fold}.pt")
    #     file_path = f"result/best_model_{fold}.npy"
    #     all_test_preds.append(
    #         get_all_test_preds(model, best_model_paths, file_path))

    # load and save finetune model
    # best_model_paths = []
    # for fold in range(4):
    #     best_model_paths.append(f"model/best_model_{fold}_finetune.pt")
    # file_path = "result/finetune_meanfold.npy"
    # all_test_preds.append(
    #     get_all_test_preds(model, best_model_paths, file_path))

    # load and save finetune2 model
    # for fold in [4, 5]:
    #     best_model_paths = []
    #     for i in range(6):
    #         best_model_paths.append(
    #             f"model/best_model_{fold}_finetune2_{i}.pt")
    #     file_path = f"result/finetune2_fold{fold}.npy"
    #     all_test_preds.append(
    #         get_all_test_preds(model, best_model_paths, file_path))

    # mean
    all_test_preds = np.array(all_test_preds)
    print(all_test_preds.shape)
    all_test_preds = all_test_preds.mean(axis=0)
    # np.save("result/1002/finetune2_012345689.npy", all_test_preds)

    return all_test_preds
Exemplo n.º 9
0
def train(model,
          train_dataloader,
          epoch,
          num_epochs,
          criterion,
          optimizer,
          is_finetune,
          scheduler=None,
          writer=None):
    model.train()

    # # do
    # def set_bn_eval(model):
    #     for name, module in model.named_children():
    #         if isinstance(module, torch.nn.BatchNorm2d):
    #             module.eval()
    #             module.weight.requires_grad = False
    #             module.bias.requires_grad = False
    #         else:
    #             set_bn_eval(module)

    # # do
    # for name, module in model.named_children():
    #     if "encoder" in name:
    #         set_bn_eval(module)

    train_loss = []
    train_iout = []
    for batch_idx, (inputs, labels, nemptys,
                    indexs) in enumerate(train_dataloader):
        if scheduler is not None:
            scheduler.step()
            lr = optimizer.param_groups[0]['lr']
            step = (epoch - 1) * len(train_dataloader) + batch_idx
            writer.add_scalar('lr/lr', lr, step)

        inputs = cuda(inputs)
        with torch.no_grad():
            labels = cuda(labels)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        logits = model(inputs)
        preds = torch.sigmoid(logits)

        loss = criterion(logits, labels)

        if not is_finetune:
            iout = get_iou_vector((preds > 0.5), labels)
        else:
            iout = get_iou_vector((logits > 0), labels)

        loss.backward()
        optimizer.step()

        train_loss.append(to_item(loss))
        train_iout.append(to_item(iout))

        sys.stdout.write('\r')
        sys.stdout.write(
            f'| Epoch [{epoch:3d}/{num_epochs:3d}] '
            f'Iter[{(batch_idx + 1):3d}/{len(train_dataloader):3d}]\t\t'
            f'Loss: {np.mean(train_loss):.4f} '
            f'IoUT: {np.mean(train_iout):.4f}')
        sys.stdout.flush()
    print()
    metrics = {
        'train_loss': np.mean(train_loss),
        'train_iout': np.mean(train_iout)
    }
    return metrics