Exemplo n.º 1
0
    def __init__(self,
                 model_cfg='yolov5s.yaml',
                 ch=3,
                 nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if type(model_cfg) is dict:
            self.md = model_cfg  # model dict
        else:  # is *.yaml
            with open(model_cfg) as f:
                self.md = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc:
            self.md['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(self.md,
                                            ch=[ch])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        m.stride = torch.tensor([
            64 / x.shape[-2] for x in self.forward(torch.zeros(1, ch, 64, 64))
        ])  # forward
        m.anchors /= m.stride.view(-1, 1, 1)
        self.stride = m.stride

        # Init weights, biases
        torch_utils.initialize_weights(self)
        self._initialize_biases()  # only run once
        torch_utils.model_info(self)
        print('')
Exemplo n.º 2
0
    def __init__(self, model_config):
        """
        :param model_config:
        """

        super(FlexibleModel, self).__init__()
        if type(model_config) is str:
            model_config = yaml.load(open(model_config, 'r'))
        model_config = Dict(model_config)
        backbone_type = model_config.backbone.pop('type')
        self.backbone = build_backbone(backbone_type, **model_config.backbone)
        backbone_out = self.backbone.out_shape

        self.fpn = build_neck('FPN', **backbone_out)
        fpn_out = self.fpn.out_shape

        fpn_out['version'] = model_config.backbone.version
        self.pan = build_neck('PAN', **fpn_out)

        # self.seghead = build_head('DecoderHead', **model_config.seghead)

        pan_out = self.pan.out_shape
        model_config.head['ch'] = pan_out
        self.detection = build_head('YOLOHead', **model_config.head)

        self.stride = self.detection.stride
        self._initialize_biases()

        initialize_weights(self)
Exemplo n.º 3
0
    def model_create(self, cfg):
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[self.ch
                                                ])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2]
                for x in self.forward(torch.zeros(1, self.ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        initialize_weights(self)
Exemplo n.º 4
0
    def __init__(self, cfg='yolov3.yaml', ch=3, nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist, ch_out
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 5
0
 def __init__(self, cfg, ch=3):  # model, input channels, number of classes
     super(Model, self).__init__()
     self.md = cfg
     # Define model
     self.model, self.save = parse_model(self.md,
                                         ch=[ch])  # model, savelist, ch_out
     # Init weights, biases
     torch_utils.initialize_weights(self)
     # torch_utils.model_info(self)
     print('')
Exemplo n.º 6
0
    def __init__(self,
                 opt,
                 hyp,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=5,
                 tb_writer=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        self.nc = nc
        self.hyp = hyp
        self.opt = opt
        self.tb_writer = tb_writer
        #init seeds

        init_seeds(2 + self.opt.global_rank)
        # Define model
        if nc and nc != self.yaml['nc']:
            print('Overriding model.yaml nc=%g with nc=%g' %
                  (self.yaml['nc'], nc))
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        initialize_weights(self)
        self.info()
        self.config()
        self.run_save()
        self.load_model()
        #self.wandb_logging()
        self.optimizer, self.lr_scheduler = self.configure_optimizers()
        self.optimizer, self.lr_scheduler = self.optimizer[
            0], self.lr_scheduler[0]
        self.resume()
Exemplo n.º 7
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub

            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(
                    f, Loader=yaml.SafeLoader)  # yaml파일 내용을 딕셔너리로 읽어들임

        # Define model
        ch = self.yaml['ch'] = self.yaml.get(
            'ch', ch)  # input channels:3 을 self.yaml 딕셔너리에 추가
        if nc and nc != self.yaml['nc']:  # num_classes가 다르면 오버라이드
            logger.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}"
            )  # 예상대로 진행되는지에 대한 확인
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(
                anchors)  # 새로 입력된 앵커박스가 있다면 yaml dict에 override
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):

            s = 256  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward / 8, 16, 32
            m.anchors /= m.stride.view(-1, 1, 1)  # 각 스케일에 대한 비율로 anchor box 조정
            check_anchor_order(m)
            self.stride = m.stride  # 8, 16, 32
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 8
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):  # &&& looking for parameter file
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml[
                'nc']:  ## &&& loading number of classes and anchors
            logger.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(
            self.yaml), ch=[ch])  # model, savelist &&& here it loads model
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[
            -1]  # Detect() # &&&& stripped last layer, what is Detect???? its class defined above
        if isinstance(m, Detect):
            s = 256  # 2x min stride  &&&& what is x below and size , what is stride https://discuss.pytorch.org/t/pytorch-tensor-stride-how-it-works/90537
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward &&&&  m.stride = tensor([ 8., 16., 32.])
            m.anchors /= m.stride.view(
                -1, 1,
                1)  # &&& this perform division and scale down of anchor sizes
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # logger.info('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 9
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        if ch == 3:  # If using default num channels, check model config to make sure this is the right number of channels
            ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            logger.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)
        # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # logger.info('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 10
0
    def __init__(self,
                 cfg='EDSR.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.SafeLoader)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            logger.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        print([x.shape for x in self.forward(torch.zeros(1, ch, 128, 128))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1,
                                       1)  # if SR_mixed model -> * scale
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 11
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            check_anchor_order(m)  # must be in pixel-space (not grid-space)
            m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')
Exemplo n.º 12
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            print('Overriding %s nc=%g with nc=%g' %
                  (cfg, self.yaml['nc'], nc))
            self.yaml['nc'] = nc  # override yaml value

        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2]
                for x in self.forward(torch.zeros(1, ch, s, s))[0]
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        self.emb_dim, self.nID = self.yaml['emb_dim'], self.yaml['nID']
        self.classifier = nn.Linear(self.emb_dim,
                                    self.nID) if self.nID > 0 else None

        # Init weights, biases
        initialize_weights(self)
        self.info()
        print('')
Exemplo n.º 13
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 nas=False,
                 nas_stage=1):
        super(Model, self).__init__()
        self.nas_stage = nas_stage
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            print('Overriding %s nc=%g with nc=%g' %
                  (cfg, self.yaml['nc'], nc))
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(
            deepcopy(self.yaml), ch=[ch],
            nas_flag=nas)  # model, savelist, ch_out
        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        print('')
Exemplo n.º 14
0
    def __init__(self,
                 model_cfg='yolov5s.yaml',
                 ch=3,
                 nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if type(model_cfg) is dict:
            self.md = model_cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            with open(model_cfg) as f:
                self.md = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.md['nc']:
            print('Overriding %s nc=%g with nc=%g' %
                  (model_cfg, self.md['nc'], nc))
            self.md['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(self.md,
                                            ch=[ch])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        torch_utils.initialize_weights(self)
        self._initialize_biases()  # only run once
        torch_utils.model_info(self)
        print('')
Exemplo n.º 15
0
    def __init__(self,
                 cfg='EDSR.yaml',
                 ch=3):  # model, input channels, number of classes
        super(SR_Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        #print([x.shape for x in self.forward(torch.zeros(1, ch, 128, 128))])

        # Init weights, biases
        initialize_weights(self)
        # self.info()
        logger.info('')
Exemplo n.º 16
0
    def __init__(self, cfg, ch=3):
        super(YoloV6, self).__init__()

        with open(cfg) as f:
            self.md = yaml.load(f, Loader=yaml.FullLoader)
        self.nc = self.md['nc']
        self.anchors = self.md['anchors']
        self.na = len(self.anchors[0]) // 2  # number of anchors
        print('model num classes is: {}'.format(self.nc))
        print('model anchors is: {}'.format(self.anchors))

        # divid by, fixed currently due to SpineNet backbone
        cd = 2
        wd = 3

        self.backbone = SpineNet(arch='49S', output_level=[3, 4, 5])

        # PANet
        self.conv5 = ConvBase(256 // cd, 256 // cd)
        # self.conv5 = SimBottleneckCSP(1024//cd, 1024//cd, n=3//wd, shortcut=False)
        self.up1 = nn.Upsample(scale_factor=2)
        self.csp5 = SimBottleneckCSP(512 // cd,
                                     256 // cd,
                                     n=3 // wd,
                                     shortcut=False)

        self.conv6 = ConvBase(256 // cd, 256 // cd)
        self.up2 = nn.Upsample(scale_factor=2)
        self.csp6 = SimBottleneckCSP(512 // cd,
                                     256 // cd,
                                     n=3 // wd,
                                     shortcut=False)

        self.conv7 = ConvBase(256 // cd, 256 // cd, 3, 2)
        self.csp7 = SimBottleneckCSP(512 // cd,
                                     512 // cd,
                                     n=3 // wd,
                                     shortcut=False)

        self.conv8 = ConvBase(512 // cd, 512 // cd, 3, 2)
        self.csp8 = SimBottleneckCSP(512 // cd,
                                     1024 // cd,
                                     n=3 // wd,
                                     shortcut=False)

        self.detect = Detect(self.nc, self.anchors,
                             [256 // cd, 512 // cd, 1024 // cd])

        # forward to get Detect lay params dynamically
        s = 512  # 2x min stride
        self.detect.stride = torch.tensor([
            s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
        ])  # forward
        self.detect.anchors /= self.detect.stride.view(-1, 1, 1)
        check_anchor_order(self.detect)
        self.stride = self.detect.stride
        self._initialize_biases()
        initialize_weights(self)

        # for compatible, in check_anchors in train.py
        self.model = [self.detect]
Exemplo n.º 17
0
def train(hyp, opt, device, tb_writer=None):
    print(f'Hyperparameters {hyp}')
    log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directory
    wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = log_dir + os.sep + 'results.txt'
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
    # TODO: Use DDP logging. Only the first process is allowed to log.

    # Save run settings
    with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Remove previous results
    if rank in [-1, 0]:
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)
    opt.cfg = 'cfg/prune_0.4_keep_0.01_yolov5s.cfg'
    opt.weights = 'weights/prune_0.4_keep_0.01_last.pt'
    opt.cfg = 'cfg/yolov5s_tiny.cfg'
    opt.weights = ''
    # Create model
    # model = Model(opt.cfg, nc=nc).to(device)
    model = Darknet(opt.cfg, (opt.img_size[0], opt.img_size[0])).to(device)
    initialize_weights(model)
    # cfg_model = Darknet('cfg/yolov5s.cfg', (416, 416)).to(device)

    # Image sizes
    # gs = int(max(model.stride))  # grid size (max stride)
    gs = int(max([8, 16, 32]))
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.BatchNorm2d' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Load Model
    if weights.endswith('.pt'):
        model.load_state_dict(torch.load(opt.weights)['model'])
    start_epoch, best_fitness = 0, 0.0

    # with torch_distributed_zero_first(rank):
    #     attempt_download(weights)
    # start_epoch, best_fitness = 0, 0.0
    # if weights.endswith('.pt'):  # pytorch format
    #     ckpt = torch.load(weights, map_location=device)  # load checkpoint
    #
    #     # load model
    #     try:
    #         exclude = ['anchor']  # exclude keys
    #         ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
    #                          if k in model.state_dict() and not any(x in k for x in exclude)
    #                          and model.state_dict()[k].shape == v.shape}
    #         model.load_state_dict(ckpt['model'], strict=False)
    #         print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(model.state_dict()), weights))
    #     except KeyError as e:
    #         s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
    #             "Please delete or update %s and try again, or use --weights '' to train from scratch." \
    #             % (weights, opt.cfg, weights, weights)
    #         raise KeyError(s) from e
    #
    #     # load optimizer
    #     if ckpt['optimizer'] is not None:
    #         optimizer.load_state_dict(ckpt['optimizer'])
    #         best_fitness = ckpt['best_fitness']
    #
    #     # load results
    #     if ckpt.get('training_results') is not None:
    #         with open(results_file, 'w') as file:
    #             file.write(ckpt['training_results'])  # write results.txt
    #
    #     # epochs
    #     start_epoch = ckpt['epoch'] + 1
    #     if epochs < start_epoch:
    #         print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
    #               (weights, ckpt['epoch'], epochs))
    #         epochs += ckpt['epoch']  # finetune additional epochs
    #
    #     del ckpt

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
        model.module_list = model.module.module_list
        model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        print('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[rank], output_device=rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            local_rank=rank,
                                            world_size=opt.world_size)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    if rank in [-1, 0]:
        # local_rank is set to -1. Because only the first process is expected to do evaluation.
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images,
                                       rect=True,
                                       local_rank=-1,
                                       world_size=opt.world_size)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))
        plot_labels(labels, save_dir=log_dir)
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, 0)

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    # scaler = amp.GradScaler(enabled=cuda)
    if rank in [0, -1]:
        print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        print('Using %g dataloader workers' % dataloader.num_workers)
        print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.from_tensor(dataset.indices,
                                                   dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        if rank in [-1, 0]:
            print(
                ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj',
                                       'cls', 'total', 'targets', 'img_size'))
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0
            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss_cfg(pred, targets.to(device),
                                                model)  # scaled by batch_size
            if rank != -1:
                loss *= opt.world_size  # gradient averaged between devices in DDP mode
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            loss.backward()

            # Autocast
            # with amp.autocast(enabled=cuda):
            #     # Forward
            #     pred = model(imgs)

            #     # Loss
            #     loss, loss_items = compute_loss(pred, targets.to(device), model)  # scaled by batch_size
            #     if rank != -1:
            #         loss *= opt.world_size  # gradient averaged between devices in DDP mode
            #     # if not torch.isfinite(loss):
            #     #     print('WARNING: non-finite loss, ending training ', loss_items)
            #     #     return results

            # # Backward
            # scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                # scaler.step(optimizer)  # optimizer.step
                # scaler.update()
                optimizer.step()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(Path(log_dir) /
                            ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema is not None:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    save_json=final_epoch
                    and opt.data.endswith(os.sep + 'coco.yaml'),
                    model=ema.ema.module
                    if hasattr(ema.ema, 'module') else ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss',
                    'val/cls_loss'
                ]
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema.module if hasattr(ema, 'module') else ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = ('_'
             if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        print('%g epochs completed in %.3f hours.\n' %
              (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Exemplo n.º 18
0
    def __init__(self,
                 cfg='yolov5s.yaml',
                 ch=3,
                 nc=None,
                 anchors=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.SafeLoader)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            logger.info(
                f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            logger.info(
                f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml),
                                            ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        #upsampling's head
        self.center = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=11, padding=5, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
        )

        self.decode1 = ResDecode(384 + 512, 256)  #layer11
        self.decode2 = ResDecode(256 + 256, 128)  #layer8
        self.decode3 = ResDecode(128 + 128, 64)  #layer6
        self.decode4 = ResDecode(64 + 64, 32)  #layer3
        self.decode5 = ResDecode(32, 16)  #layer2
        # self.logit = nn.Conv2d(16, 1, kernel_size=3, padding=1) #segmentation output

        # fc[-1].bias.data.fill_(-2.19)

        self.logit = nn.Sequential(
            nn.Conv2d(16, 256, kernel_size=3, padding=1, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1, kernel_size=1, stride=1, padding=0, bias=True))
        self.logit[-1].bias.data.fill_(-2.19)

        #~upsampling's head

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.stride = torch.tensor([
                s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))
            ])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        logger.info('')
Exemplo n.º 19
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    model = Darknet(opt.cfg, (opt.img_size[0], opt.img_size[0])).to(device)
    initialize_weights(model)

    distill = opt.distill
    if distill:
        t_cfg = "models/yolov5s.yaml"
        t_weights = "runs/train/s_hand/weights/last.pt"
        t_data = "data/coco_hand.yaml"
        ckpt = torch.load(t_weights, map_location=device)  # load checkpoint
        with open(t_data) as f:
            data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
        nc = int(data_dict['nc'])
        t_model = Model(t_cfg, nc=nc).to(device)
        exclude = ['anchor']  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     t_model.state_dict(),
                                     exclude=exclude)  # intersect
        t_model.load_state_dict(state_dict, strict=False)  # load
        t_model.eval()
        print(
            '<.....................using knowledge distillation.......................>'
        )
        print('teacher model:', t_weights, '\n')

    # Model
    # pretrained = weights.endswith('.pt')
    # if pretrained:
    #     with torch_distributed_zero_first(rank):
    #         attempt_download(weights)  # download if not found locally
    #     ckpt = torch.load(weights, map_location=device)  # load checkpoint
    #     if hyp.get('anchors'):
    #         ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
    #     model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
    #     exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else []  # exclude keys
    #     state_dict = ckpt['model'].float().state_dict()  # to FP32
    #     state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
    #     model.load_state_dict(state_dict, strict=False)  # load
    #     logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    # else:
    #     model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    # if wandb and wandb.run is None:
    #     wandb_run = wandb.init(config=opt, resume="allow",
    #                            project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
    #                            name=save_dir.stem,
    #                            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    if weights.endswith('.pt'):
        model.load_state_dict(torch.load(opt.weights)['model'])
    start_epoch, best_fitness = 0, 0.0
    # if pretrained:
    #     # Optimizer
    #     if ckpt['optimizer'] is not None:
    #         optimizer.load_state_dict(ckpt['optimizer'])
    #         best_fitness = ckpt['best_fitness']
    #
    #     # Results
    #     if ckpt.get('training_results') is not None:
    #         with open(results_file, 'w') as file:
    #             file.write(ckpt['training_results'])  # write results.txt
    #
    #     # Epochs
    #     start_epoch = ckpt['epoch'] + 1
    #     if opt.resume:
    #         assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
    #     if epochs < start_epoch:
    #         logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
    #                     (weights, ckpt['epoch'], epochs))
    #         epochs += ckpt['epoch']  # finetune additional epochs
    #
    #     del ckpt, state_dict

    # Image sizes
    # gs = int(max(model.stride))  # grid size (max stride)
    gs = int(max([8, 16, 32]))
    nl = 3
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
        model.module_list = model.module.module_list
        model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            # plot_labels(labels, save_dir=save_dir)
            plot_labels(labels, save_dir, loggers)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            # if not opt.noautoanchor:
            #     check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    hyp['obj'] *= imgsz**2 / 640.**2 * 3. / nl  # scale hyp['obj'] to image size and output layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    # model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                # cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        msoft_target = torch.zeros(1).to(device)
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss_cfg(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            if distill:
                soft_target = 0
                reg_ratio = 0  #表示有多少target的回归是不如老师的,这时学生会跟gt再学习
                # _,output_t = t_model(imgs)
                with torch.no_grad():
                    _, output_t = t_model(imgs)

                #soft_target = distillation_loss1(pred, output_t, model.nc, imgs.size(0))
                #这里把蒸馏策略改为了二,想换回一的可以注释掉loss2,把loss1取消注释
                soft_target, reg_ratio = distillation_loss2(
                    model, targets.to(device), pred, output_t)

                loss += soft_target

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                msoft_target = (msoft_target * i + soft_target) / (i + 1)
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(save_dir / f'train_batch{ni}.jpg')  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    # if tb_writer and result is not None:
                    # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test_cfg(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=epoch == 0 or final_epoch,  # plot first and last
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=save_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results