Exemplo n.º 1
0
def evaluate_baseline(test_set,
                      baseline_model,
                      epochs=100,
                      shot=1,
                      way=5,
                      querysize=32,
                      verbose=0,
                      load_weights_dirname=None,
                      save_finetune_dirname=None):
    test_set = loader.load_miniImgnet(test_path)
    # create dataset for training, validation, testing
    train_img, train_label, val_img, val_label, test_img, test_label, labels_pick  = \
        tester.create_finetuningset(dataset=test_set, way=way, shot=shot, querysize=querysize)
    train_img = train_img / 255.
    val_img = val_img / 255.
    test_img = test_img / 255.

    input_shape = train_img.shape[1:]

    # baseline
    # baseline = Baseline(input_shape=input_shape,
    #                     classes=way,
    #                     loadbb=True,
    #                     load_weigths_path=os.path.join("../weights/{}/{}".format(load_weights_dirname, \
    #                                 'baseline_training.h5')),
    #                     freezebb=True)
    # baseline.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(lr=1e-3),
    #               metrics=['accuracy'])
    baseline_model.load_weights(os.path.join("../weights/{}/{}".format(load_weights_dirname, \
                                    'baseline_training.h5')), by_name=True, skip_mismatch=True)
    print(K.eval(baseline_model.layers[-1].bias))

    history_baseline = trainer.train_model(model=baseline_model,
                    x=train_img, y=train_label,
                    shuffle=True,
                    val_data=(val_img, val_label),
                    batch_size=querysize,
                    epochs=epochs ,
                    save_weights_path=os.path.join("../weights/{}/{}".format(save_finetune_dirname, \
                        'baseline_finetuning_{}shot.h5'.format(shot))),
                    monitor='val_acc',
                    verbose=verbose
                    )

    # load best model and
    baseline_model.load_weights(
        '../weights/{}/baseline_finetuning_{}shot.h5'.format(
            save_finetune_dirname, shot))
    performance_baseline_finetune = baseline_model.evaluate(x=test_img,
                                                            y=test_label)

    dirpath = "../results/{}".format(save_finetune_dirname)
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)
    with open(os.path.join(dirpath, "result_baseline.txt"), "a") as file:
        np.savetxt(file,
                   np.array(performance_baseline_finetune).reshape(1, -1))
Exemplo n.º 2
0
for param in model.features.parameters():
    param.requires_grad = False
print("getting data")
data_loaders = get_data()
print("getting model")
model.to(device)
EPOCHS = 5
#weight = torch.tensor([0.327, 0.586, 2.0, 2.572, 26.452, 15.0]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)

print("TRAINING CLASSIFIER")

model, val_acc_history = train_model(model=model,
                                     dataloaders=data_loaders,
                                     criterion=criterion,
                                     optimizer=optimizer,
                                     num_epochs=EPOCHS)

torch.save(model.state_dict(), 'code/models/saved_models/mvcnn_stage_1.pkl')

for param in model.parameters():
    param.requires_grad = True

print("FINE TUNING")

EPOCHS = 3
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),
                       lr=0.00005)  # We use a smaller learning rate
Exemplo n.º 3
0
    # hyperparameter search
    if args.search is not None:
        traverser.traverser(*args.search)

    # experiments
    if args.experiment is not None:
        # compare all regression and vectorization methods
        if args.experiment == "compare_all":
            experiments.benchmark_all(args.filename, False)
            experiments.benchmark_all(args.filename, True)
        # evaluate a regression method with a vectorization method
        if args.experiment == "evaluate":
            MSE, RMSE, MAE, r_square = evaluater.evaluate_baseline(
                args.vectorizer, args.method, args.filename, args.extra_feat)
            print("MSE:", MSE)
            print("RMSE:", RMSE)
            print("MAE:", MAE)
            print("R square:", r_square)

        # pretrained BERT + regression neural network
        if args.experiment == "train_net":
            if args.save_name is None:
                args.save_name = args.filename
            if args.pretask[0] is not None:
                args.pretask[0] = int(args.pretask[0])
            trainer.train_model(args.filename, 20, [10, 15, 18, 20], 128, 1e-3,
                                args.save_name, args.extra_feat,
                                args.conditional, args.pretask[0],
                                args.pretask[1], args.dropout, args.batchnorm,
                                args.no_freeze)
train_img = train_img / 255.
val_img = val_img / 255.

# baseline
baseline = Baseline(input_shape=input_shape, classes=classes)
baseline.compile(loss='sparse_categorical_crossentropy',
                 optimizer=Adam(lr=optimizer_lr),
                 metrics=['accuracy'])

history_baseline = trainer.train_model(model=baseline,
                    x=train_img, y=train_label,
                    shuffle=True,
                    val_data=(val_img, val_label),
                    batch_size=64,
                    epochs=train_epoch ,
                    # foldername=EXP_NAME,
                    # weights_file='baseline_training.h5', # save weights
                    save_weights_path=os.path.join("../weights/{}/{}".format(EXP_NAME, \
                                        'baseline_training.h5')),
                    monitor='val_acc',
                    )
out_filepath = os.path.join("../output/{}/{}".format(
    EXP_NAME, 'history_baseline_training.pickle'))
saver.save_output(history_baseline, out_filepath)

# baseline_plus
baseline_plus = Baseline_plus(input_shape=input_shape, classes=classes)
baseline_plus.compile(loss='sparse_categorical_crossentropy',
                      optimizer=Adam(lr=optimizer_lr),
                      metrics=['accuracy'])
history_baseline_plus = trainer.train_model(model=baseline_plus,
Exemplo n.º 5
0
def main(configs):

    from utils.generate_dataset_jsons import generate_dataset_jsons
    generate_dataset_jsons(configs.dataset_folder)
    with open('dataset_rgb_train.json') as json_file:
        dataset_rgb_train_json = json.load(json_file)
    with open('dataset_rgb_valid.json') as json_file:
        dataset_rgb_valid_json = json.load(json_file)
    with open('dataset_mmaps_train.json') as json_file:
        dataset_mmaps_train_json = json.load(json_file)
    with open('dataset_mmaps_valid.json') as json_file:
        dataset_mmaps_valid_json = json.load(json_file)
    with open('dataset_flow_train.json') as json_file:
        dataset_flow_train_json = json.load(json_file)
    with open('dataset_flow_valid.json') as json_file:
        dataset_flow_valid_json = json.load(json_file)

    torch.backends.cudnn.benchmark = True

    if os.path.exists(configs.output_folder):
        print('Warning: output folder {} already exists!'.format(
            configs.output_folder))
    try:
        os.makedirs(configs.output_folder)
    except FileExistsError:
        pass

    normalize = Normalize(mean=[0.485, 0.456, 0.406],
                          std=[0.229, 0.224, 0.225])
    normalize_5 = Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    randomHorizontalFlip = RandomHorizontalFlip()
    randomMultiScaleCornerCrop = MultiScaleCornerCrop(
        [1, 0.875, 0.75, 0.65625], 224)

    train_transforms = Compose([
        randomHorizontalFlip, randomMultiScaleCornerCrop,
        ToTensor(), normalize
    ])

    train_transforms.randomize_parameters()

    valid_transforms = Compose([CenterCrop(224), ToTensor(), normalize])

    train_transforms_mmaps = Compose([
        randomHorizontalFlip, randomMultiScaleCornerCrop,
        Scale(7),
        ToTensor(),
        Binarize()
    ])

    valid_transforms_mmaps = Compose(
        [CenterCrop(224), Scale(7),
         ToTensor(), Binarize()])

    train_transforms_5 = Compose([
        randomHorizontalFlip, randomMultiScaleCornerCrop,
        ToTensor(), normalize_5
    ])

    valid_transforms_5 = Compose([CenterCrop(224), ToTensor(), normalize_5])

    print('Loading dataset')

    if configs.dataset == 'DatasetRGB':
        dataset_rgb_train = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_train_json,
                                       spatial_transform=train_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_rgb_valid = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_valid_json,
                                       spatial_transform=valid_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5,
                                       device='cuda')

        dataset_train = dataset_rgb_train
        dataset_valid = dataset_rgb_valid

        forward_fn = forward_rgb
    elif configs.dataset == 'DatasetRGBMMAPS':
        dataset_rgb_train = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_train_json,
                                       spatial_transform=train_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_rgb_valid = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_valid_json,
                                       spatial_transform=valid_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5,
                                       device='cuda')
        dataset_mmaps_train = DatasetMMAPS(
            configs.dataset_folder,
            dataset_mmaps_train_json,
            spatial_transform=train_transforms_mmaps,
            seqLen=configs.dataset_rgb_n_frames,
            minLen=1,
            enable_randomize_transform=False)
        dataset_mmaps_valid = DatasetMMAPS(
            configs.dataset_folder,
            dataset_mmaps_valid_json,
            spatial_transform=valid_transforms_mmaps,
            seqLen=configs.dataset_rgb_n_frames,
            minLen=1,
            enable_randomize_transform=False,
            device='cuda')

        dataset_rgbmmaps_train = DatasetRGBMMAPS(dataset_rgb_train,
                                                 dataset_mmaps_train)
        dataset_rgbmmaps_valid = DatasetRGBMMAPS(dataset_rgb_valid,
                                                 dataset_mmaps_valid)

        dataset_train = dataset_rgbmmaps_train
        dataset_valid = dataset_rgbmmaps_valid

        forward_fn = forward_rgbmmaps
    elif configs.dataset == 'DatasetFlow':
        dataset_flow_train = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_train_json,
            spatial_transform=train_transforms,
            stack_size=configs.dataset_flow_stack_size,
            sequence_mode='single_random')
        dataset_flow_valid = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_valid_json,
            spatial_transform=valid_transforms,
            stack_size=configs.dataset_flow_stack_size,
            sequence_mode='single_midtime')

        dataset_train = dataset_flow_train
        dataset_valid = dataset_flow_valid

        forward_fn = forward_flow
    elif configs.dataset == 'DatasetFlowMultiple':
        dataset_flow_train = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_train_json,
            spatial_transform=train_transforms_5,
            stack_size=configs.dataset_flow_stack_size,
            n_sequences=configs.dataset_flow_n_sequences,
            sequence_mode='multiple_jittered')
        dataset_flow_valid = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_valid_json,
            spatial_transform=valid_transforms_5,
            stack_size=configs.dataset_flow_stack_size,
            n_sequences=configs.dataset_flow_n_sequences,
            sequence_mode='multiple')

        dataset_train = dataset_flow_train
        dataset_valid = dataset_flow_valid

        forward_fn = forward_flowmultiple
    elif configs.dataset == 'DatasetRGBFlow':
        dataset_rgb_train = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_train_json,
                                       spatial_transform=train_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_rgb_valid = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_valid_json,
                                       spatial_transform=valid_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_flow_train = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_train_json,
            spatial_transform=train_transforms,
            stack_size=configs.dataset_flow_stack_size,
            sequence_mode='single_random',
            enable_randomize_transform=False)
        dataset_flow_valid = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_valid_json,
            spatial_transform=valid_transforms,
            stack_size=configs.dataset_flow_stack_size,
            sequence_mode='single_midtime',
            enable_randomize_transform=False)

        dataset_rgbflow_train = DatasetRGBFlow(dataset_rgb_train,
                                               dataset_flow_train)
        dataset_rgbflow_valid = DatasetRGBFlow(dataset_rgb_valid,
                                               dataset_flow_valid)

        dataset_train = dataset_rgbflow_train
        dataset_valid = dataset_rgbflow_valid

        forward_fn = forward_rgbflow
    elif configs.dataset == 'DatasetRGBFlowMultiple':
        dataset_rgb_train = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_train_json,
                                       spatial_transform=train_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_rgb_valid = DatasetRGB(configs.dataset_folder,
                                       dataset_rgb_valid_json,
                                       spatial_transform=valid_transforms,
                                       seqLen=configs.dataset_rgb_n_frames,
                                       minLen=5)
        dataset_flow_train = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_train_json,
            spatial_transform=train_transforms_5,
            stack_size=configs.dataset_flow_stack_size,
            n_sequences=configs.dataset_rgb_n_frames,
            sequence_mode='multiple',
            enable_randomize_transform=False)
        dataset_flow_valid = DatasetFlow(
            configs.dataset_folder,
            dataset_flow_valid_json,
            spatial_transform=valid_transforms_5,
            stack_size=configs.dataset_flow_stack_size,
            n_sequences=configs.dataset_rgb_n_frames,
            sequence_mode='multiple',
            enable_randomize_transform=False)

        dataset_rgbflow_train = DatasetRGBFlow(dataset_rgb_train,
                                               dataset_flow_train)
        dataset_rgbflow_valid = DatasetRGBFlow(dataset_rgb_valid,
                                               dataset_flow_valid)

        dataset_train = dataset_rgbflow_train
        dataset_valid = dataset_rgbflow_valid

        forward_fn = forward_rgbflowmultiple
    else:
        raise ValueError('Unknown dataset type: {}'.format(configs.dataset))

    report_file = open(os.path.join(configs.output_folder, 'report.txt'), 'a')

    for config in configs:
        config_name = hashlib.md5(str(config).encode('utf-8')).hexdigest()
        print('Running', config_name)

        with open(
                os.path.join(configs.output_folder,
                             config_name + '.params.txt'), 'w') as f:
            f.write(pprint.pformat(config))

        train_loader = torch.utils.data.DataLoader(
            dataset_train, **config['TRAIN_DATA_LOADER'])
        valid_loader = torch.utils.data.DataLoader(
            dataset_valid, **config['VALID_DATA_LOADER'])

        model_class = config['MODEL']['model']
        model_params = {
            k: v
            for (k, v) in config['MODEL'].items() if k != 'model'
        }
        model = model_class(**model_params)
        if config['TRAINING'].get('_model_state_dict', None) is not None:
            model.load_weights(config['TRAINING']['_model_state_dict'])
        model.train(config['TRAINING']['train_mode'])
        model.cuda()

        loss_class = config['LOSS']['loss']
        loss_params = {
            k: v
            for (k, v) in config['LOSS'].items() if k != 'loss'
        }
        loss_fn = loss_class(**loss_params)

        model_weights = []
        for i in range(10):
            group_name = '_group_' + str(i)
            if group_name + '_params' in config['OPTIMIZER']:
                model_weights_group = {
                    'params':
                    model.get_training_parameters(
                        name=config['OPTIMIZER'][group_name + '_params'])
                }
                for k in config['OPTIMIZER']:
                    if k.startswith(
                            group_name) and k != group_name + '_params':
                        model_weights_group[k[9:]] = config['OPTIMIZER'][k]
                model_weights.append(model_weights_group)
        if len(model_weights) == 0:
            model_weights = model.get_training_parameters()

        optimizer_class = config['OPTIMIZER']['optimizer']
        optimizer_params = {
            k: v
            for (k, v) in config['OPTIMIZER'].items()
            if k != 'optimizer' and not k.startswith('_')
        }
        optimizer = optimizer_class(model_weights, **optimizer_params)

        scheduler_class = config['SCHEDULER']['scheduler']
        scheduler_params = {
            k: v
            for (k, v) in config['SCHEDULER'].items()
            if k != 'scheduler' and not k.startswith('_')
        }
        scheduler_lr = scheduler_class(optimizer, **scheduler_params)

        model_state_dict_path = os.path.join(configs.output_folder,
                                             config_name + '.model')
        logfile = open(
            os.path.join(configs.output_folder, config_name + '.log.txt'), 'w')

        result = train_model(model=model,
                             train_loader=train_loader,
                             valid_loader=valid_loader,
                             forward_fn=forward_fn,
                             loss_fn=loss_fn,
                             optimizer=optimizer,
                             scheduler_lr=scheduler_lr,
                             model_state_dict_path=model_state_dict_path,
                             logfile=logfile,
                             **{
                                 k: v
                                 for (k, v) in config['TRAINING'].items()
                                 if not k.startswith('_')
                             })

        max_valid_accuracy_idx = np.argmax(result['accuracies_valid'])

        print(
            '{} | Train Loss {:04.2f} | Train Accuracy = {:05.2f}% | Valid Loss {:04.2f} | Valid Accuracy = {:05.2f}%'
            .format(config_name,
                    result['losses_train'][max_valid_accuracy_idx],
                    result['accuracies_train'][max_valid_accuracy_idx] * 100,
                    result['losses_valid'][max_valid_accuracy_idx],
                    result['accuracies_valid'][max_valid_accuracy_idx] * 100),
            file=report_file)