Exemplo n.º 1
0
 def batch_precision_recall(batch_pred, batch_labels):
     precision_recall_list = []
     for i in range(batch_labels.shape[0]):
         precision_recall = precisionRecall_torch(batch_pred[i],
                                                  batch_labels[i])
         precision_recall_list.append(precision_recall)
     precision = np.mean([
         precision_recall["precision"]
         for precision_recall in precision_recall_list
     ])
     recall = np.mean([
         precision_recall["recall"]
         for precision_recall in precision_recall_list
     ])
     return {"precision": precision, "recall": recall}
Exemplo n.º 2
0
    def add2tensorboard_nms(self,
                            img,
                            labels_2D,
                            semi,
                            task="training",
                            batch_size=1):
        """
        # deprecated:
        :param img:
        :param labels_2D:
        :param semi:
        :param task:
        :param batch_size:
        :return:
        """
        from utils.utils import getPtsFromHeatmap
        from utils.utils import box_nms

        boxNms = False
        n_iter = self.n_iter

        nms_dist = self.config["model"]["nms"]
        conf_thresh = self.config["model"]["detection_threshold"]
        # print("nms_dist: ", nms_dist)
        precision_recall_list = []
        precision_recall_boxnms_list = []
        for idx in range(batch_size):
            semi_flat_tensor = flattenDetection(semi[idx, :, :, :]).detach()
            semi_flat = toNumpy(semi_flat_tensor)
            semi_thd = np.squeeze(semi_flat, 0)
            pts_nms = getPtsFromHeatmap(semi_thd, conf_thresh, nms_dist)
            semi_thd_nms_sample = np.zeros_like(semi_thd)
            semi_thd_nms_sample[pts_nms[1, :].astype(np.int),
                                pts_nms[0, :].astype(np.int)] = 1

            label_sample = torch.squeeze(labels_2D[idx, :, :, :])
            # pts_nms = getPtsFromHeatmap(label_sample.numpy(), conf_thresh, nms_dist)
            # label_sample_rms_sample = np.zeros_like(label_sample.numpy())
            # label_sample_rms_sample[pts_nms[1, :].astype(np.int), pts_nms[0, :].astype(np.int)] = 1
            label_sample_nms_sample = label_sample

            if idx < 5:
                result_overlap = img_overlap(
                    np.expand_dims(label_sample_nms_sample, 0),
                    np.expand_dims(semi_thd_nms_sample, 0),
                    toNumpy(img[idx, :, :, :]),
                )
                self.writer.add_image(
                    task + "-detector_output_thd_overlay-NMS" + "/%d" % idx,
                    result_overlap,
                    n_iter,
                )
            assert semi_thd_nms_sample.shape == label_sample_nms_sample.size()
            precision_recall = precisionRecall_torch(
                torch.from_numpy(semi_thd_nms_sample), label_sample_nms_sample)
            precision_recall_list.append(precision_recall)

            if boxNms:
                semi_flat_tensor_nms = box_nms(semi_flat_tensor.squeeze(),
                                               nms_dist,
                                               min_prob=conf_thresh).cpu()
                semi_flat_tensor_nms = (semi_flat_tensor_nms >=
                                        conf_thresh).float()

                if idx < 5:
                    result_overlap = img_overlap(
                        np.expand_dims(label_sample_nms_sample, 0),
                        semi_flat_tensor_nms.numpy()[np.newaxis, :, :],
                        toNumpy(img[idx, :, :, :]),
                    )
                    self.writer.add_image(
                        task + "-detector_output_thd_overlay-boxNMS" +
                        "/%d" % idx,
                        result_overlap,
                        n_iter,
                    )
                precision_recall_boxnms = precisionRecall_torch(
                    semi_flat_tensor_nms, label_sample_nms_sample)
                precision_recall_boxnms_list.append(precision_recall_boxnms)

        precision = np.mean([
            precision_recall["precision"]
            for precision_recall in precision_recall_list
        ])
        recall = np.mean([
            precision_recall["recall"]
            for precision_recall in precision_recall_list
        ])
        self.writer.add_scalar(task + "-precision_nms", precision, n_iter)
        self.writer.add_scalar(task + "-recall_nms", recall, n_iter)
        print("-- [%s-%d-fast NMS] precision: %.4f, recall: %.4f" %
              (task, n_iter, precision, recall))
        if boxNms:
            precision = np.mean([
                precision_recall["precision"]
                for precision_recall in precision_recall_boxnms_list
            ])
            recall = np.mean([
                precision_recall["recall"]
                for precision_recall in precision_recall_boxnms_list
            ])
            self.writer.add_scalar(task + "-precision_boxnms", precision,
                                   n_iter)
            self.writer.add_scalar(task + "-recall_boxnms", recall, n_iter)
            print("-- [%s-%d-boxNMS] precision: %.4f, recall: %.4f" %
                  (task, n_iter, precision, recall))