Exemplo n.º 1
0
def main():
    """
    need to specify save path: save_path_npy and save_path_txt
    :return:
    """
    args = make_parser().parse_args()
    grasp_sampler_args = utils.read_checkpoint_args(args.grasp_sampler_folder)
    grasp_sampler_args.is_train = False
    grasp_evaluator_args = utils.read_checkpoint_args(
        args.grasp_evaluator_folder)
    grasp_evaluator_args.continue_train = True
    estimator = grasp_estimator.GraspEstimator(grasp_sampler_args,
                                               grasp_evaluator_args, args)

    point_cloud = np.load(args.pc_path)
    generated_grasps, generated_scores = estimator.generate_and_refine_grasps(
        point_cloud)

    grasp_pose_score = {
        'grasp': np.array(generated_grasps),
        'score': np.array(generated_scores)
    }
    np.save(args.npy_save_path, grasp_pose_score)
    print('successfully saved %s' % args.npy_save_path)
    with open(args.txt_save_path, 'w') as w:
        for pose, score in zip(generated_grasps, generated_scores):
            w.write(str(pose))
            w.write('   ')
            w.write(str(score) + '\n')
            w.flush()
    print('successfully saved %s' % args.txt_save_path)
Exemplo n.º 2
0
def main(args):

    parser = make_parser()
    args = parser.parse_args()
    grasp_sampler_args = utils.read_checkpoint_args(args.grasp_sampler_folder)
    grasp_sampler_args.is_train = False
    grasp_evaluator_args = utils.read_checkpoint_args(
        args.grasp_evaluator_folder)
    grasp_evaluator_args.continue_train = True
    estimator = grasp_estimator.GraspEstimator(grasp_sampler_args,
                                               grasp_evaluator_args, args)
    if args.train_data:
        grasp_sampler_args.dataset_root_folder = args.dataset_root_folder
        grasp_sampler_args.num_grasps_per_object = 1
        grasp_sampler_args.num_objects_per_batch = 1
        dataset = DataLoader(grasp_sampler_args)
        for i, data in enumerate(dataset):
            generated_grasps, generated_scores = estimator.generate_and_refine_grasps(
                data["pc"].squeeze())

            return generated_grasps, generated_scores
    else:
        for npy_file in glob.glob(os.path.join(args.npy_folder, '*.npy'))[::-1]:
            # Depending on your numpy version you may need to change allow_pickle
            # from True to False.

            data = np.load(npy_file, allow_pickle=True,
                           encoding="latin1").item()

            depth = data['depth']
            image = data['image']
            K = data['intrinsics_matrix']
            # Removing points that are farther than 1 meter or missing depth
            # values.
            #depth[depth == 0 or depth > 1] = np.nan

            np.nan_to_num(depth, copy=False)
            mask = np.where(np.logical_or(depth == 0, depth > 1))
            depth[mask] = np.nan
            pc, selection = backproject(depth,
                                        K,
                                        return_finite_depth=True,
                                        return_selection=True)
            pc_colors = image.copy()
            pc_colors = np.reshape(pc_colors, [-1, 3])
            pc_colors = pc_colors[selection, :]

            # Smoothed pc comes from averaging the depth for 10 frames and removing
            # the pixels with jittery depth between those 10 frames.
            object_pc = data['smoothed_object_pc']
            generated_grasps, generated_scores = estimator.generate_and_refine_grasps(
                object_pc)
            return generated_grasps, generated_scores
Exemplo n.º 3
0
    def configure(self, cfg: dict):
        """Additional class configuration

        Parameters
        ----------
        cfg : dict configuration dict, as sourced from the YAML file
        """

        # Create a namespace from the config dict
        # Since the GraspNet implementation uses a namespace
        self.cfg_ns = SimpleNamespace(**self.cfg)

        self.grasp_sampler_args = utils.read_checkpoint_args(
            self.cfg_ns.grasp_sampler_folder)
        self.grasp_sampler_args.is_train = False
        self.grasp_evaluator_args = utils.read_checkpoint_args(
            self.cfg_ns.grasp_evaluator_folder)
        self.grasp_evaluator_args.continue_train = True

        self.estimator = grasp_estimator.GraspEstimator(
            self.grasp_sampler_args, self.grasp_evaluator_args, self.cfg_ns)
Exemplo n.º 4
0
        Returns:
          grasp_success: list of binary numbers. 0 means that the grasp failed,
            and 1 means that the grasp succeeded.
        """
        raise NotImplementedError(
            "The code for grasp evaluation is not released")

    def __del__(self):
        del self._grasp_reader


if __name__ == '__main__':
    args = make_parser(sys.argv)
    utils.mkdir(args.output_folder)

    grasp_sampler_args = utils.read_checkpoint_args(args.grasp_sampler_folder)
    grasp_sampler_args.is_train = False
    grasp_evaluator_args = utils.read_checkpoint_args(
        args.grasp_evaluator_folder)
    grasp_evaluator_args.continue_train = True
    if args.gradient_based_refinement:
        args.num_refine_steps = 10
        args.refinement = "gradient"
    else:
        args.num_refine_steps = 20
        args.refinement = "sampling"

    estimator = grasp_estimator.GraspEstimator(grasp_sampler_args,
                                               grasp_evaluator_args, args)
    evaluator = Evaluator(
        cfg,