Exemplo n.º 1
0
class SSD(object):
    _defaults = {
        #--------------------------------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
        #
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
        #--------------------------------------------------------------------------#
        "model_path"        : 'model_data/ssd_weights.h5',
        "classes_path"      : 'model_data/voc_classes.txt',
        #---------------------------------------------------------------------#
        #   用于预测的图像大小,和train时使用同一个即可
        #---------------------------------------------------------------------#
        "input_shape"       : [300, 300],
        #---------------------------------------------------------------------#
        #   只有得分大于置信度的预测框会被保留下来
        #---------------------------------------------------------------------#
        "confidence"        : 0.5,
        #---------------------------------------------------------------------#
        #   非极大抑制所用到的nms_iou大小
        #---------------------------------------------------------------------#
        "nms_iou"           : 0.45,
        #---------------------------------------------------------------------#
        #   用于指定先验框的大小
        #---------------------------------------------------------------------#
        'anchors_size'      : [30, 60, 111, 162, 213, 264, 315],
        #---------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
        #---------------------------------------------------------------------#
        "letterbox_image"   : False,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化ssd
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)
        #---------------------------------------------------#
        #   计算总的类的数量
        #---------------------------------------------------#
        self.class_names, self.num_classes  = get_classes(self.classes_path)
        self.anchors                        = get_anchors(self.input_shape, self.anchors_size)
        self.num_classes                    = self.num_classes + 1
        
        #---------------------------------------------------#
        #   画框设置不同的颜色
        #---------------------------------------------------#
        hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
        
        self.bbox_util = BBoxUtility(self.num_classes, nms_thresh=self.nms_iou)
        self.generate()

        show_config(**self._defaults)

    #---------------------------------------------------#
    #   载入模型
    #---------------------------------------------------#
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
        
        #-------------------------------#
        #   载入模型与权值
        #-------------------------------#
        self.ssd = SSD300([self.input_shape[0], self.input_shape[1], 3], self.num_classes)
        self.ssd.load_weights(self.model_path, by_name=True)
        print('{} model, anchors, and classes loaded.'.format(model_path))

    @tf.function
    def get_pred(self, photo):
        preds = self.ssd(photo, training=False)
        return preds
    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image, crop = False, count = False):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data  = preprocess_input(np.expand_dims(np.array(image_data, dtype='float32'), 0))

        preds       = self.get_pred(image_data).numpy()
        #-----------------------------------------------------------#
        #   将预测结果进行解码
        #-----------------------------------------------------------#
        results     = self.bbox_util.decode_box(preds, self.anchors, image_shape, 
                                                self.input_shape, self.letterbox_image, confidence=self.confidence)
        #--------------------------------------#
        #   如果没有检测到物体,则返回原图
        #--------------------------------------#
        if len(results[0])<=0:
            return image

        top_label   = np.array(results[0][:, 4], dtype = 'int32')
        top_conf    = results[0][:, 5]
        top_boxes   = results[0][:, :4]
        #---------------------------------------------------------#
        #   设置字体与边框厚度
        #---------------------------------------------------------#
        font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
        thickness = max((np.shape(image)[0] + np.shape(image)[1]) // self.input_shape[0], 1)
        #---------------------------------------------------------#
        #   计数
        #---------------------------------------------------------#
        if count:
            print("top_label:", top_label)
            classes_nums    = np.zeros([self.num_classes])
            for i in range(self.num_classes):
                num = np.sum(top_label == i)
                if num > 0:
                    print(self.class_names[i], " : ", num)
                classes_nums[i] = num
            print("classes_nums:", classes_nums)
        #---------------------------------------------------------#
        #   是否进行目标的裁剪
        #---------------------------------------------------------#
        if crop:
            for i, c in list(enumerate(top_boxes)):
                top, left, bottom, right = top_boxes[i]
                top     = max(0, np.floor(top).astype('int32'))
                left    = max(0, np.floor(left).astype('int32'))
                bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
                right   = min(image.size[0], np.floor(right).astype('int32'))
                
                dir_save_path = "img_crop"
                if not os.path.exists(dir_save_path):
                    os.makedirs(dir_save_path)
                crop_image = image.crop([left, top, right, bottom])
                crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
                print("save crop_" + str(i) + ".png to " + dir_save_path)
        #---------------------------------------------------------#
        #   图像绘制
        #---------------------------------------------------------#
        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box             = top_boxes[i]
            score           = top_conf[i]

            top, left, bottom, right = box

            top     = max(0, np.floor(top).astype('int32'))
            left    = max(0, np.floor(left).astype('int32'))
            bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
            right   = min(image.size[0], np.floor(right).astype('int32'))

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)
            
            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
            draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
            draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
            del draw

        return image

    def get_FPS(self, image, test_interval):
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = preprocess_input(np.expand_dims(np.array(image_data, dtype='float32'), 0))

        preds       = self.get_pred(image_data).numpy()
        #-----------------------------------------------------------#
        #   将预测结果进行解码
        #-----------------------------------------------------------#
        results     = self.bbox_util.decode_box(preds, self.anchors, image_shape, 
                                                self.input_shape, self.letterbox_image, confidence=self.confidence)
        t1 = time.time()
        for _ in range(test_interval):
            preds       = self.get_pred(image_data).numpy()
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            results     = self.bbox_util.decode_box(preds, self.anchors, image_shape, 
                                                    self.input_shape, self.letterbox_image, confidence=self.confidence)
        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time

    def get_map_txt(self, image_id, image, class_names, map_out_path):
        f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") 
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image       = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data  = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data  = preprocess_input(np.expand_dims(np.array(image_data, dtype='float32'), 0))

        preds       = self.get_pred(image_data).numpy()
        #-----------------------------------------------------------#
        #   将预测结果进行解码
        #-----------------------------------------------------------#
        results     = self.bbox_util.decode_box(preds, self.anchors, image_shape, 
                                                self.input_shape, self.letterbox_image, confidence=self.confidence)
        #--------------------------------------#
        #   如果没有检测到物体,则返回原图
        #--------------------------------------#
        if len(results[0])<=0:
            return 

        top_label   = results[0][:, 4]
        top_conf    = results[0][:, 5]
        top_boxes   = results[0][:, :4]

        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box             = top_boxes[i]
            score           = str(top_conf[i])
            
            top, left, bottom, right = box

            if predicted_class not in class_names:
                continue

            f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))

        f.close()
        return 
Exemplo n.º 2
0
class SSD(object):
    _defaults = {
        #--------------------------------------------------------------------------#
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
        #
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
        #--------------------------------------------------------------------------#
        "model_path": 'model_data/ssd_weights.pth',
        "classes_path": 'model_data/voc_classes.txt',
        #---------------------------------------------------------------------#
        #   用于预测的图像大小,和train时使用同一个即可
        #---------------------------------------------------------------------#
        "input_shape": [300, 300],
        #-------------------------------#
        #   主干网络的选择
        #   vgg或者mobilenetv2
        #-------------------------------#
        "backbone": "vgg",
        #---------------------------------------------------------------------#
        #   只有得分大于置信度的预测框会被保留下来
        #---------------------------------------------------------------------#
        "confidence": 0.5,
        #---------------------------------------------------------------------#
        #   非极大抑制所用到的nms_iou大小
        #---------------------------------------------------------------------#
        "nms_iou": 0.45,
        #---------------------------------------------------------------------#
        #   用于指定先验框的大小
        #---------------------------------------------------------------------#
        'anchors_size': [30, 60, 111, 162, 213, 264, 315],
        #---------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
        #---------------------------------------------------------------------#
        "letterbox_image": False,
        #-------------------------------#
        #   是否使用Cuda
        #   没有GPU可以设置成False
        #-------------------------------#
        "cuda": True,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化ssd
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        for name, value in kwargs.items():
            setattr(self, name, value)
        #---------------------------------------------------#
        #   计算总的类的数量
        #---------------------------------------------------#
        self.class_names, self.num_classes = get_classes(self.classes_path)
        self.anchors = torch.from_numpy(
            get_anchors(self.input_shape, self.anchors_size,
                        self.backbone)).type(torch.FloatTensor)
        if self.cuda:
            self.anchors = self.anchors.cuda()
        self.num_classes = self.num_classes + 1

        #---------------------------------------------------#
        #   画框设置不同的颜色
        #---------------------------------------------------#
        hsv_tuples = [(x / self.num_classes, 1., 1.)
                      for x in range(self.num_classes)]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        self.bbox_util = BBoxUtility(self.num_classes)
        self.generate()

        show_config(**self._defaults)

    #---------------------------------------------------#
    #   载入模型
    #---------------------------------------------------#
    def generate(self, onnx=False):
        #-------------------------------#
        #   载入模型与权值
        #-------------------------------#
        self.net = SSD300(self.num_classes, self.backbone)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.net.load_state_dict(
            torch.load(self.model_path, map_location=device))
        self.net = self.net.eval()
        print('{} model, anchors, and classes loaded.'.format(self.model_path))
        if not onnx:
            if self.cuda:
                self.net = torch.nn.DataParallel(self.net)
                self.net = self.net.cuda()

    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image, crop=False, count=False):
        #---------------------------------------------------#
        #   计算输入图片的高和宽
        #---------------------------------------------------#
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            #---------------------------------------------------#
            #   转化成torch的形式
            #---------------------------------------------------#
            images = torch.from_numpy(image_data).type(torch.FloatTensor)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            results = self.bbox_util.decode_box(outputs,
                                                self.anchors,
                                                image_shape,
                                                self.input_shape,
                                                self.letterbox_image,
                                                nms_iou=self.nms_iou,
                                                confidence=self.confidence)
            #--------------------------------------#
            #   如果没有检测到物体,则返回原图
            #--------------------------------------#
            if len(results[0]) <= 0:
                return image

            top_label = np.array(results[0][:, 4], dtype='int32')
            top_conf = results[0][:, 5]
            top_boxes = results[0][:, :4]
        #---------------------------------------------------------#
        #   设置字体与边框厚度
        #---------------------------------------------------------#
        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * np.shape(image)[1] +
                                                0.5).astype('int32'))
        thickness = max(
            (np.shape(image)[0] + np.shape(image)[1]) // self.input_shape[0],
            1)
        #---------------------------------------------------------#
        #   计数
        #---------------------------------------------------------#
        if count:
            print("top_label:", top_label)
            classes_nums = np.zeros([self.num_classes])
            for i in range(self.num_classes):
                num = np.sum(top_label == i)
                if num > 0:
                    print(self.class_names[i], " : ", num)
                classes_nums[i] = num
            print("classes_nums:", classes_nums)
        #---------------------------------------------------------#
        #   是否进行目标的裁剪
        #---------------------------------------------------------#
        if crop:
            for i, c in list(enumerate(top_boxes)):
                top, left, bottom, right = top_boxes[i]
                top = max(0, np.floor(top).astype('int32'))
                left = max(0, np.floor(left).astype('int32'))
                bottom = min(image.size[1], np.floor(bottom).astype('int32'))
                right = min(image.size[0], np.floor(right).astype('int32'))

                dir_save_path = "img_crop"
                if not os.path.exists(dir_save_path):
                    os.makedirs(dir_save_path)
                crop_image = image.crop([left, top, right, bottom])
                crop_image.save(os.path.join(dir_save_path,
                                             "crop_" + str(i) + ".png"),
                                quality=95,
                                subsampling=0)
                print("save crop_" + str(i) + ".png to " + dir_save_path)
        #---------------------------------------------------------#
        #   图像绘制
        #---------------------------------------------------------#
        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box = top_boxes[i]
            score = top_conf[i]

            top, left, bottom, right = box

            top = max(0, np.floor(top).astype('int32'))
            left = max(0, np.floor(left).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom).astype('int32'))
            right = min(image.size[0], np.floor(right).astype('int32'))

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin,
                      str(label, 'UTF-8'),
                      fill=(0, 0, 0),
                      font=font)
            del draw

        return image

    def get_FPS(self, image, test_interval):
        #---------------------------------------------------#
        #   计算输入图片的高和宽
        #---------------------------------------------------#
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            #---------------------------------------------------#
            #   转化成torch的形式
            #---------------------------------------------------#
            images = torch.from_numpy(image_data).type(torch.FloatTensor)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            results = self.bbox_util.decode_box(outputs,
                                                self.anchors,
                                                image_shape,
                                                self.input_shape,
                                                self.letterbox_image,
                                                nms_iou=self.nms_iou,
                                                confidence=self.confidence)

        t1 = time.time()
        for _ in range(test_interval):
            with torch.no_grad():
                #---------------------------------------------------------#
                #   将图像输入网络当中进行预测!
                #---------------------------------------------------------#
                outputs = self.net(images)
                #-----------------------------------------------------------#
                #   将预测结果进行解码
                #-----------------------------------------------------------#
                results = self.bbox_util.decode_box(outputs,
                                                    self.anchors,
                                                    image_shape,
                                                    self.input_shape,
                                                    self.letterbox_image,
                                                    nms_iou=self.nms_iou,
                                                    confidence=self.confidence)

        t2 = time.time()
        tact_time = (t2 - t1) / test_interval
        return tact_time

    def convert_to_onnx(self, simplify, model_path):
        import onnx
        self.generate(onnx=True)

        im = torch.zeros(1, 3, *self.input_shape).to(
            'cpu')  # image size(1, 3, 512, 512) BCHW
        input_layer_names = ["images"]
        output_layer_names = ["output"]

        # Export the model
        print(f'Starting export with onnx {onnx.__version__}.')
        torch.onnx.export(self.net,
                          im,
                          f=model_path,
                          verbose=False,
                          opset_version=12,
                          training=torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=True,
                          input_names=input_layer_names,
                          output_names=output_layer_names,
                          dynamic_axes=None)

        # Checks
        model_onnx = onnx.load(model_path)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model

        # Simplify onnx
        if simplify:
            import onnxsim
            print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
            model_onnx, check = onnxsim.simplify(model_onnx,
                                                 dynamic_input_shape=False,
                                                 input_shapes=None)
            assert check, 'assert check failed'
            onnx.save(model_onnx, model_path)

        print('Onnx model save as {}'.format(model_path))

    def get_map_txt(self, image_id, image, class_names, map_out_path):
        f = open(
            os.path.join(map_out_path,
                         "detection-results/" + image_id + ".txt"), "w")
        #---------------------------------------------------#
        #   计算输入图片的高和宽
        #---------------------------------------------------#
        image_shape = np.array(np.shape(image)[0:2])
        #---------------------------------------------------------#
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
        #---------------------------------------------------------#
        image = cvtColor(image)
        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        image_data = resize_image(image,
                                  (self.input_shape[1], self.input_shape[0]),
                                  self.letterbox_image)
        #---------------------------------------------------------#
        #   添加上batch_size维度,图片预处理,归一化。
        #---------------------------------------------------------#
        image_data = np.expand_dims(
            np.transpose(
                preprocess_input(np.array(image_data, dtype='float32')),
                (2, 0, 1)), 0)

        with torch.no_grad():
            #---------------------------------------------------#
            #   转化成torch的形式
            #---------------------------------------------------#
            images = torch.from_numpy(image_data).type(torch.FloatTensor)
            if self.cuda:
                images = images.cuda()
            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            #-----------------------------------------------------------#
            #   将预测结果进行解码
            #-----------------------------------------------------------#
            results = self.bbox_util.decode_box(outputs,
                                                self.anchors,
                                                image_shape,
                                                self.input_shape,
                                                self.letterbox_image,
                                                nms_iou=self.nms_iou,
                                                confidence=self.confidence)
            #--------------------------------------#
            #   如果没有检测到物体,则返回原图
            #--------------------------------------#
            if len(results[0]) <= 0:
                return

            top_label = np.array(results[0][:, 4], dtype='int32')
            top_conf = results[0][:, 5]
            top_boxes = results[0][:, :4]

        for i, c in list(enumerate(top_label)):
            predicted_class = self.class_names[int(c)]
            box = top_boxes[i]
            score = str(top_conf[i])

            top, left, bottom, right = box
            if predicted_class not in class_names:
                continue

            f.write("%s %s %s %s %s %s\n" %
                    (predicted_class, score[:6], str(int(left)), str(
                        int(top)), str(int(right)), str(int(bottom))))

        f.close()
        return