def get_patches(self, index):
        """
        # ------------------------------------
        # get L/H patches from L/H images
        # ------------------------------------
        """
        L_path = self.paths_L[index]
        H_path = self.paths_H[index]
        img_L = util.imread_uint(L_path, self.n_channels)  # uint format
        img_H = util.imread_uint(H_path, self.n_channels)  # uint format

        H, W = img_H.shape[:2]

        L_patches, H_patches = [], []

        num = self.num_patches_per_image
        for _ in range(num):
            rnd_h = random.randint(0, max(0, H - self.path_size))
            rnd_w = random.randint(0, max(0, W - self.path_size))
            L_patch = img_L[rnd_h:rnd_h + self.path_size, rnd_w:rnd_w + self.path_size, :]
            H_patch = img_H[rnd_h:rnd_h + self.path_size, rnd_w:rnd_w + self.path_size, :]
            L_patches.append(L_patch)
            H_patches.append(H_patch)

        return L_patches, H_patches
Exemplo n.º 2
0
def test(model, epoch, writer=None, dataset_name='my_val'):
    model.eval()
    L_folder = 'DIV2K/DIV2K_valid_LR_bicubic'
    lr_paths = glob.glob(os.path.join(L_folder, 'X4', '*.png'))
    num = len(lr_paths)
    psnr_sum, ssim_sum = 0, 0
    with torch.no_grad():
        for i, lr_path in enumerate(lr_paths):
            hr_path = lr_path.replace('LR_bicubic',
                                      'HR').replace('X4/',
                                                    '').replace('x4', '')

            lr = util.imread_uint(lr_path, n_channels=3)
            lr = util.uint2tensor4(lr)
            lr = lr.cuda()
            hr = util.imread_uint(hr_path, n_channels=3)
            hr = util.uint2tensor4(hr)
            hr = hr.cuda()

            hr_fake = model.forward(lr)
            hr_fake = hr_fake.clamp(0, 1)
            psnr = new_psnr(hr, hr_fake)
            ssim = new_ssim(hr, hr_fake)
            print('epoch {}, img {}, psnr {}, ssim {}'.format(
                epoch, i, psnr, ssim))
            psnr_sum += psnr
            ssim_sum += ssim
    psnr_sum, ssim_sum = psnr_sum / num, ssim_sum / num
    print('epoch {}, {} {} imgs , avg psnr {}, avg ssim {}'.format(
        epoch, dataset_name, num, psnr_sum, ssim_sum))
    if writer is not None:
        writer.add_scalar('psnr_test_{}'.format(dataset_name), psnr_sum, epoch)
        writer.add_scalar('ssim_test_{}'.format(dataset_name), ssim_sum, epoch)
Exemplo n.º 3
0
    def __getitem__(self, index):

        if self.opt['phase'] == 'train':

            patch_L, patch_H = self.L_data[index], self.H_data[index]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = random.randint(0, 7)
            patch_L = util.augment_img(patch_L, mode=mode)
            patch_H = util.augment_img(patch_H, mode=mode)

            patch_L, patch_H = util.uint2tensor3(patch_L), util.uint2tensor3(
                patch_H)

        else:

            L_path, H_path = self.paths_L[index], self.paths_H[index]
            patch_L = util.imread_uint(L_path, self.n_channels)
            patch_H = util.imread_uint(H_path, self.n_channels)

            patch_L, patch_H = util.uint2tensor3(patch_L), util.uint2tensor3(
                patch_H)

        return {'L': patch_L, 'H': patch_H}
Exemplo n.º 4
0
    def __getitem__(self, index):

        # ------------------------------------
        # get H image
        # ------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)

        # ------------------------------------
        # get L image
        # ------------------------------------
        L_path = self.paths_L[index]
        img_L = util.imread_uint(L_path, self.n_channels)

        # ------------------------------------
        # if train, get L/H patch pair
        # ------------------------------------
        if self.opt['phase'] == 'train':

            H, W, _ = img_H.shape

            # --------------------------------
            # randomly crop the patch
            # --------------------------------
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_L = img_L[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]
            patch_H = img_H[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = np.random.randint(0, 8)
            patch_L, patch_H = util.augment_img(
                patch_L, mode=mode), util.augment_img(patch_H, mode=mode)

            # --------------------------------
            # HWC to CHW, numpy(uint) to tensor
            # --------------------------------
            img_L, img_H = util.uint2tensor3(patch_L), util.uint2tensor3(
                patch_H)

        else:

            # --------------------------------
            # HWC to CHW, numpy(uint) to tensor
            # --------------------------------
            img_L, img_H = util.uint2tensor3(img_L), util.uint2tensor3(img_H)

        return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}
Exemplo n.º 5
0
def general_image_folder(opt):
therwise, it will store every resolution info.

    img_folder = opt['img_folder']
    lmdb_save_path = opt['lmdb_save_path']
    meta_info = {'name': opt['name']}

    if not lmdb_save_path.endswith('.lmdb'):
        raise ValueError("lmdb_save_path must end with 'lmdb'.")
    if os.path.exists(lmdb_save_path):
        print('Folder [{:s}] already exists. Exit...'.format(lmdb_save_path))
        sys.exit(1)

    # read all the image paths to a list

    print('Reading image path list ...')
    all_img_list = util.get_image_paths(img_folder)
    keys = []
    for img_path in all_img_list:
        img_path_split = img_path.split('/')[-2:]
        img_name_ext = img_path_split[0] + '_' + img_path_split[1]
        img_name, ext = os.path.splitext(img_name_ext)
        keys.append(img_name)

    data_size_per_img = cv2.imread(all_img_list[0], cv2.IMREAD_UNCHANGED).nbytes
    print('data size per image is: ', data_size_per_img)
    data_size = data_size_per_img * len(all_img_list)
    env = lmdb.open(lmdb_save_path, map_size=data_size * 10)

    txn = env.begin(write=True)
    resolutions = []
    tqdm_iter = tqdm(enumerate(zip(all_img_list, keys)), total=len(all_img_list), leave=False)
    for idx, (path, key) in tqdm_iter:
        tqdm_iter.set_description('Write {}'.format(key))

        key_byte = key.encode('ascii')
        data = util.imread_uint(path, 3)
        H, W, C = data.shape
        resolutions.append('{:d}_{:d}_{:d}'.format(C, H, W))

        txn.put(key_byte, data)
        if (idx + 1) % opt['commit_interval'] == 0:
            txn.commit()
            txn = env.begin(write=True)
    txn.commit()
    env.close()
    print('Finish writing lmdb.')

    assert len(keys) == len(resolutions)
    if len(set(resolutions)) <= 1:
        meta_info['resolution'] = [resolutions[0]]
        meta_info['keys'] = keys
        print('All images have the same resolution. Simplify the meta info.')
    else:
        meta_info['resolution'] = resolutions
        meta_info['keys'] = keys
        print('Not all images have the same resolution. Save meta info for each image.')

    pickle.dump(meta_info, open(os.path.join(lmdb_save_path, 'meta_info.pkl'), "wb"))
    print('Finish creating lmdb meta info.')
Exemplo n.º 6
0
def load_image(infile, n_channels):
    img_name, ext = os.path.splitext(os.path.basename(infile))
    print("Input File: %s" % (img_name + ext))
    img_L = util.imread_uint(infile, n_channels=n_channels)
    img_L = util.uint2single(img_L)
    img_L = util.single2tensor4(img_L)
    print('Brisque Score of input image : %f' % (brisq.get_score(infile)))
    return img_name, ext, img_L
    def __getitem__(self, index: int) -> Dict[str, Union[str, torch.Tensor]]:
        # get H image
        img_path = self.img_paths[index]
        img_H = util.imread_uint(img_path, self.n_channels)

        H, W = img_H.shape[:2]

        if self.opt['phase'] == 'train':

            self.count += 1

            # crop
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_H = img_H[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]

            # augmentation
            patch_H = util.augment_img(patch_H, mode=np.random.randint(0, 8))

            # HWC to CHW, numpy(uint) to tensor
            img_H = util.uint2tensor3(patch_H)
            img_L: torch.Tensor = img_H.clone()

            # get noise level
            noise_level: torch.FloatTensor = torch.FloatTensor(
                [np.random.uniform(self.sigma[0], self.sigma[1])]) / 255.0

            # add noise
            noise = torch.randn(img_L.size()).mul_(noise_level).float()
            img_L.add_(noise)

        else:
            img_H = util.uint2single(img_H)
            img_L = np.copy(img_H)

            # add noise
            np.random.seed(seed=0)
            img_L += np.random.normal(0, self.sigma / 255.0, img_L.shape)

            noise_level = torch.FloatTensor([self.sigma / 255.0])

            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(
                img_L)

        return {
            'y': img_L,
            'y_gt': img_H,
            'sigma': noise_level.unsqueeze(1).unsqueeze(1),
            'path': img_path
        }
Exemplo n.º 8
0
    def __getitem__(self, index):
        L_path = None

        # ------------------------------------
        # get L image
        # ------------------------------------
        L_path = self.paths_L[index]
        img_L = util.imread_uint(L_path, self.n_channels)

        # ------------------------------------
        # HWC to CHW, numpy to tensor
        # ------------------------------------
        img_L = util.uint2tensor3(img_L)

        return {'L': img_L, 'L_path': L_path}
    def __getitem__(self, index):

        H_path = 'toy.png'
        if self.opt['phase'] == 'train':

            patch_H = self.H_data[index]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = np.random.randint(0, 8)
            patch_H = util.augment_img(patch_H, mode=mode)

            patch_H = util.uint2tensor3(patch_H)
            patch_L = patch_H.clone()

            # ------------------------------------
            # add noise
            # ------------------------------------
            noise = torch.randn(patch_L.size()).mul_(self.sigma / 255.0)
            patch_L.add_(noise)

        else:

            H_path = self.paths_H[index]
            img_H = util.imread_uint(H_path, self.n_channels)
            img_H = util.uint2single(img_H)
            img_L = np.copy(img_H)

            # ------------------------------------
            # add noise
            # ------------------------------------
            np.random.seed(seed=0)
            img_L += np.random.normal(0, self.sigma_test / 255.0, img_L.shape)
            patch_L, patch_H = util.single2tensor3(img_L), util.single2tensor3(
                img_H)

        L_path = H_path
        return {'L': patch_L, 'H': patch_H, 'L_path': L_path, 'H_path': H_path}
Exemplo n.º 10
0
    def __getitem__(self, index):
        # ------------------------------------
        # get H image
        # ------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)

        L_path = H_path

        if self.opt['phase'] == 'train':
            """
            # --------------------------------
            # get L/H patch pairs
            # --------------------------------
            """
            H, W, _ = img_H.shape

            # --------------------------------
            # randomly crop the patch
            # --------------------------------
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_H = img_H[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]

            # --------------------------------
            # augmentation - flip, rotate
            # --------------------------------
            mode = np.random.randint(0, 8)
            patch_H = util.augment_img(patch_H, mode=mode)

            # --------------------------------
            # HWC to CHW, numpy(uint) to tensor
            # --------------------------------
            img_H = util.uint2tensor3(patch_H)
            img_L = img_H.clone()

            # --------------------------------
            # add noise
            # --------------------------------
            noise = torch.randn(img_L.size()).mul_(self.sigma / 255.0)
            img_L.add_(noise)

        else:
            """
            # --------------------------------
            # get L/H image pairs
            # --------------------------------
            """
            img_H = util.uint2single(img_H)
            img_L = np.copy(img_H)

            # --------------------------------
            # add noise
            # --------------------------------
            np.random.seed(seed=0)
            img_L += np.random.normal(0, self.sigma_test / 255.0, img_L.shape)

            # --------------------------------
            # HWC to CHW, numpy to tensor
            # --------------------------------
            img_L = util.single2tensor3(img_L)
            img_H = util.single2tensor3(img_H)

        return {'L': img_L, 'H': img_H, 'H_path': H_path, 'L_path': L_path}
Exemplo n.º 11
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 0 / 255.0  # set AWGN noise level for LR image, default: 0
    noise_level_model = noise_level_img  # set noise level of model, default: 0
    model_name = 'ircnn_color'  # set denoiser, 'drunet_color' | 'ircnn_color'
    testset_name = 'Set18'  # set testing set,  'set18' | 'set24'
    x8 = True  # set PGSE to boost performance, default: True
    iter_num = 40  # set number of iterations, default: 40 for demosaicing
    modelSigma1 = 49  # set sigma_1, default: 49
    modelSigma2 = max(0.6, noise_level_model * 255.)  # set sigma_2, default
    matlab_init = True

    show_img = False  # default: False
    save_L = True  # save LR image
    save_E = True  # save estimated image
    save_LEH = False  # save zoomed LR, E and H images
    border = 10  # default 10 for demosaicing

    task_current = 'dm'  # 'dm' for demosaicing
    n_channels = 3  # fixed
    model_zoo = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + task_current + '_' + model_name
    model_path = os.path.join(model_zoo, model_name + '.pth')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.cuda.empty_cache()

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    # ----------------------------------------
    # load model
    # ----------------------------------------

    if 'drunet' in model_name:
        from models.network_unet import UNetRes as net
        model = net(in_nc=n_channels + 1,
                    out_nc=n_channels,
                    nc=[64, 128, 256, 512],
                    nb=4,
                    act_mode='R',
                    downsample_mode="strideconv",
                    upsample_mode="convtranspose")
        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        for _, v in model.named_parameters():
            v.requires_grad = False
        model = model.to(device)
    elif 'ircnn' in model_name:
        from models.network_dncnn import IRCNN as net
        model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
        model25 = torch.load(model_path)
        former_idx = 0

    logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info('Model path: {:s}'.format(model_path))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    test_results = OrderedDict()
    test_results['psnr'] = []

    for idx, img in enumerate(L_paths):

        # --------------------------------
        # (1) get img_H and img_L
        # --------------------------------

        idx += 1
        img_name, ext = os.path.splitext(os.path.basename(img))
        img_H = util.imread_uint(img, n_channels=n_channels)
        CFA, CFA4, mosaic, mask = utils_mosaic.mosaic_CFA_Bayer(img_H)

        # --------------------------------
        # (2) initialize x
        # --------------------------------

        if matlab_init:  # matlab demosaicing for initialization
            CFA4 = util.uint2tensor4(CFA4).to(device)
            x = utils_mosaic.dm_matlab(CFA4)
        else:
            x = cv2.cvtColor(CFA, cv2.COLOR_BAYER_BG2RGB_EA)
            x = util.uint2tensor4(x).to(device)

        img_L = util.tensor2uint(x)
        y = util.uint2tensor4(mosaic).to(device)

        util.imshow(img_L) if show_img else None
        mask = util.single2tensor4(mask.astype(np.float32)).to(device)

        # --------------------------------
        # (3) get rhos and sigmas
        # --------------------------------

        rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255 / 255.,
                                                   noise_level_img),
                                         iter_num=iter_num,
                                         modelSigma1=modelSigma1,
                                         modelSigma2=modelSigma2,
                                         w=1.0)
        rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to(
            device)

        # --------------------------------
        # (4) main iterations
        # --------------------------------

        for i in range(iter_num):

            # --------------------------------
            # step 1, closed-form solution
            # --------------------------------

            x = (y + rhos[i].float() * x).div(mask + rhos[i])

            # --------------------------------
            # step 2, denoiser
            # --------------------------------

            if 'ircnn' in model_name:
                current_idx = np.int(
                    np.ceil(sigmas[i].cpu().numpy() * 255. / 2.) - 1)
                if current_idx != former_idx:
                    model.load_state_dict(model25[str(current_idx)],
                                          strict=True)
                    model.eval()
                    for _, v in model.named_parameters():
                        v.requires_grad = False
                    model = model.to(device)
                former_idx = current_idx

            x = torch.clamp(x, 0, 1)
            if x8:
                x = util.augment_img_tensor4(x, i % 8)

            if 'drunet' in model_name:
                x = torch.cat((x, sigmas[i].float().repeat(
                    1, 1, x.shape[2], x.shape[3])),
                              dim=1)
                x = utils_model.test_mode(model,
                                          x,
                                          mode=2,
                                          refield=32,
                                          min_size=256,
                                          modulo=16)
                # x = model(x)
            elif 'ircnn' in model_name:
                x = model(x)

            if x8:
                if i % 8 == 3 or i % 8 == 5:
                    x = util.augment_img_tensor4(x, 8 - i % 8)
                else:
                    x = util.augment_img_tensor4(x, i % 8)

        x[mask.to(torch.bool)] = y[mask.to(torch.bool)]

        # --------------------------------
        # (4) img_E
        # --------------------------------

        img_E = util.tensor2uint(x)
        psnr = util.calculate_psnr(img_E, img_H, border=border)
        test_results['psnr'].append(psnr)
        logger.info('{:->4d}--> {:>10s} -- PSNR: {:.2f}dB'.format(
            idx, img_name + ext, psnr))

        if save_E:
            util.imsave(
                img_E,
                os.path.join(E_path, img_name + '_' + model_name + '.png'))

        if save_L:
            util.imsave(img_L, os.path.join(E_path, img_name + '_L.png'))

        if save_LEH:
            util.imsave(
                np.concatenate([img_L, img_E, img_H], axis=1),
                os.path.join(E_path, img_name + model_name + '_LEH.png'))

    ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
    logger.info('------> Average PSNR(RGB) of ({}) is : {:.2f} dB'.format(
        testset_name, ave_psnr))
Exemplo n.º 12
0
def main():
    """
    # ----------------------------------------------------------------------------------
    # In real applications, you should set proper 
    # - "noise_level_img": from [3, 25], set 3 for clean image, try 15 for very noisy LR images
    # - "k" (or "kernel_width"): blur kernel is very important!!!  kernel_width from [0.6, 3.0]
    # to get the best performance.
    # ----------------------------------------------------------------------------------
    """
    ##############################################################################

    testset_name = 'Set3C'  # set test set,  'set5' | 'srbsd68'
    noise_level_img = 3  # set noise level of image, from [3, 25], set 3 for clean image
    model_name = 'drunet_color'  # 'ircnn_color'         # set denoiser, | 'drunet_color' | 'ircnn_gray' | 'drunet_gray' | 'ircnn_color'
    sf = 2  # set scale factor, 1, 2, 3, 4
    iter_num = 24  # set number of iterations, default: 24 for SISR

    # --------------------------------
    # set blur kernel
    # --------------------------------
    kernel_width_default_x1234 = [
        0.6, 0.9, 1.7, 2.2
    ]  # Gaussian kernel widths for x1, x2, x3, x4
    noise_level_model = noise_level_img / 255.  # noise level of model
    kernel_width = kernel_width_default_x1234[sf - 1]
    """
    # set your own kernel width !!!!!!!!!!
    """
    # kernel_width = 1.0

    k = utils_deblur.fspecial('gaussian', 25, kernel_width)
    k = sr.shift_pixel(k, sf)  # shift the kernel
    k /= np.sum(k)

    ##############################################################################

    show_img = False
    util.surf(k) if show_img else None
    x8 = True  # default: False, x8 to boost performance
    modelSigma1 = 49  # set sigma_1, default: 49
    modelSigma2 = max(sf, noise_level_model * 255.)
    classical_degradation = True  # set classical degradation or bicubic degradation

    task_current = 'sr'  # 'sr' for super-resolution
    n_channels = 1 if 'gray' in model_name else 3  # fixed
    model_zoo = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_realapplications_' + task_current + '_' + model_name
    model_path = os.path.join(model_zoo, model_name + '.pth')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.cuda.empty_cache()

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------
    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    # ----------------------------------------
    # load model
    # ----------------------------------------
    if 'drunet' in model_name:
        from models.network_unet import UNetRes as net
        model = net(in_nc=n_channels + 1,
                    out_nc=n_channels,
                    nc=[64, 128, 256, 512],
                    nb=4,
                    act_mode='R',
                    downsample_mode="strideconv",
                    upsample_mode="convtranspose")
        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        for _, v in model.named_parameters():
            v.requires_grad = False
        model = model.to(device)
    elif 'ircnn' in model_name:
        from models.network_dncnn import IRCNN as net
        model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
        model25 = torch.load(model_path)
        former_idx = 0

    logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info('Model path: {:s}'.format(model_path))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    for idx, img in enumerate(L_paths):

        # --------------------------------
        # (1) get img_L
        # --------------------------------
        logger.info('Model path: {:s} Image: {:s}'.format(model_path, img))
        img_name, ext = os.path.splitext(os.path.basename(img))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)
        img_L = util.modcrop(img_L, 8)  # modcrop

        # --------------------------------
        # (2) get rhos and sigmas
        # --------------------------------
        rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255 / 255.,
                                                   noise_level_model),
                                         iter_num=iter_num,
                                         modelSigma1=modelSigma1,
                                         modelSigma2=modelSigma2,
                                         w=1)
        rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to(
            device)

        # --------------------------------
        # (3) initialize x, and pre-calculation
        # --------------------------------
        x = cv2.resize(img_L, (img_L.shape[1] * sf, img_L.shape[0] * sf),
                       interpolation=cv2.INTER_CUBIC)

        if np.ndim(x) == 2:
            x = x[..., None]

        if classical_degradation:
            x = sr.shift_pixel(x, sf)
        x = util.single2tensor4(x).to(device)

        img_L_tensor, k_tensor = util.single2tensor4(
            img_L), util.single2tensor4(np.expand_dims(k, 2))
        [k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor],
                                                 device)
        FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf)

        # --------------------------------
        # (4) main iterations
        # --------------------------------
        for i in range(iter_num):

            print('Iter: {} / {}'.format(i, iter_num))

            # --------------------------------
            # step 1, FFT
            # --------------------------------
            tau = rhos[i].float().repeat(1, 1, 1, 1)
            x = sr.data_solution(x, FB, FBC, F2B, FBFy, tau, sf)

            if 'ircnn' in model_name:
                current_idx = np.int(
                    np.ceil(sigmas[i].cpu().numpy() * 255. / 2.) - 1)

                if current_idx != former_idx:
                    model.load_state_dict(model25[str(current_idx)],
                                          strict=True)
                    model.eval()
                    for _, v in model.named_parameters():
                        v.requires_grad = False
                    model = model.to(device)
                former_idx = current_idx

            # --------------------------------
            # step 2, denoiser
            # --------------------------------
            if x8:
                x = util.augment_img_tensor4(x, i % 8)

            if 'drunet' in model_name:
                x = torch.cat(
                    (x, sigmas[i].repeat(1, 1, x.shape[2], x.shape[3])), dim=1)
                x = utils_model.test_mode(model,
                                          x,
                                          mode=2,
                                          refield=64,
                                          min_size=256,
                                          modulo=16)
            elif 'ircnn' in model_name:
                x = model(x)

            if x8:
                if i % 8 == 3 or i % 8 == 5:
                    x = util.augment_img_tensor4(x, 8 - i % 8)
                else:
                    x = util.augment_img_tensor4(x, i % 8)

        # --------------------------------
        # (3) img_E
        # --------------------------------
        img_E = util.tensor2uint(x)
        util.imsave(
            img_E,
            os.path.join(E_path, img_name + '_x' + str(sf) + '_' + model_name +
                         '.png'))
Exemplo n.º 13
0
def modcrop_np(img, sf):
    '''
    Args:
        img: numpy image, WxH or WxHxC
        sf: scale factor

    Return:
        cropped image
    '''
    w, h = img.shape[:2]
    im = np.copy(img)
    return im[:w - w % sf, :h - h % sf, ...]


if __name__ == '__main__':
    img = util.imread_uint('test.bmp', 3)

#    img = util.uint2single(img)
#    k = utils_deblur.fspecial('gaussian', 7, 1.6)
#
#    for sf in [2, 3, 4]:
#
#        # modcrop
#        img = modcrop_np(img, sf=sf)
#
#        # 1) bicubic degradation
#        img_b = bicubic_degradation(img, sf=sf)
#        print(img_b.shape)
#
#        # 2) srmd degradation
#        img_s = srmd_degradation(img, k, sf=sf)
Exemplo n.º 14
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------
    model_name = 'usrnet'      # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
    testset_name = 'set_real'  # test set,  'set_real'
    test_image = 'chip.png'    # 'chip.png', 'comic.png'
    #test_image = 'comic.png'

    sf = 4                     # scale factor, only from {1, 2, 3, 4}
    show_img = False           # default: False
    save_E = True              # save estimated image
    save_LE = True             # save zoomed LR, Estimated images

    # ----------------------------------------
    # set noise level and kernel
    # ----------------------------------------
    if 'chip' in test_image:
        noise_level_img = 15       # noise level for LR image, 15 for chip
        kernel_width_default_x1234 = [0.6, 0.9, 1.7, 2.2] # Gaussian kernel widths for x1, x2, x3, x4
    else:
        noise_level_img = 2       # noise level for LR image, 0.5~3 for clean images
        kernel_width_default_x1234 = [0.4, 0.7, 1.5, 2.0] # default Gaussian kernel widths of clean/sharp images for x1, x2, x3, x4

    noise_level_model = noise_level_img/255.  # noise level of model
    kernel_width = kernel_width_default_x1234[sf-1]

    # set your own kernel width
    # kernel_width = 2.2

    k = utils_deblur.fspecial('gaussian', 25, kernel_width)
    k = sr.shift_pixel(k, sf)  # shift the kernel
    k /= np.sum(k)
    util.surf(k) if show_img else None
    # scio.savemat('kernel_realapplication.mat', {'kernel':k})

    # load approximated bicubic kernels
    #kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']
#    kernels = loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']
#    kernel = kernels[0, sf-2].astype(np.float64)

    kernel = util.single2tensor4(k[..., np.newaxis])


    n_channels = 1 if 'gray' in  model_name else 3  # 3 for color image, 1 for grayscale image
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'     # fixed
    results = 'results'       # fixed
    result_name = testset_name + '_' + model_name
    model_path = os.path.join(model_pool, model_name+'.pth')

    # ----------------------------------------
    # L_path, E_path
    # ----------------------------------------
    L_path = os.path.join(testsets, testset_name) # L_path, fixed, for Low-quality images
    E_path = os.path.join(results, result_name)   # E_path, fixed, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
    logger = logging.getLogger(logger_name)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------
    if 'tiny' in model_name:
        model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64],
                    nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
    else:
        model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
                    nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")

    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for key, v in model.named_parameters():
        v.requires_grad = False

    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))

    logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img))
    logger.info(L_path)

    img = os.path.join(L_path, test_image)
    # ------------------------------------
    # (1) img_L
    # ------------------------------------
    img_name, ext = os.path.splitext(os.path.basename(img))
    img_L = util.imread_uint(img, n_channels=n_channels)
    img_L = util.uint2single(img_L)

    util.imshow(img_L) if show_img else None
    w, h = img_L.shape[:2]
    logger.info('{:>10s}--> ({:>4d}x{:<4d})'.format(img_name+ext, w, h))

    # boundary handling
    boarder = 8     # default setting for kernel size 25x25
    img = cv2.resize(img_L, (sf*h, sf*w), interpolation=cv2.INTER_NEAREST)
    img = utils_deblur.wrap_boundary_liu(img, [int(np.ceil(sf*w/boarder+2)*boarder), int(np.ceil(sf*h/boarder+2)*boarder)])
    img_wrap = sr.downsample_np(img, sf, center=False)
    img_wrap[:w, :h, :] = img_L
    img_L = img_wrap

    util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format(noise_level_img)) if show_img else None

    img_L = util.single2tensor4(img_L)
    img_L = img_L.to(device)

    # ------------------------------------
    # (2) img_E
    # ------------------------------------
    sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
    [img_L, kernel, sigma] = [el.to(device) for el in [img_L, kernel, sigma]]

    img_E = model(img_L, kernel, sf, sigma)

    img_E = util.tensor2uint(img_E)[:sf*w, :sf*h, ...]

    if save_E:
        util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_'+model_name+'.png'))

    # --------------------------------
    # (3) save img_LE
    # --------------------------------
    if save_LE:
        k_v = k/np.max(k)*1.2
        k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3]))
        k_factor = 3
        k_v = cv2.resize(k_v, (k_factor*k_v.shape[1], k_factor*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
        img_L = util.tensor2uint(img_L)[:w, :h, ...]
        img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
        img_I[:k_v.shape[0], :k_v.shape[1], :] = k_v
        util.imshow(np.concatenate([img_I, img_E], axis=1), title='LR / Recovered') if show_img else None
        util.imsave(np.concatenate([img_I, img_E], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_'+model_name+'_LE.png'))
Exemplo n.º 15
0
    def __getitem__(self, index):

        # -------------------
        # get H image
        # -------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)
        L_path = H_path

        if self.opt['phase'] == 'train':

            # ---------------------------
            # 1) scale factor, ensure each batch only involves one scale factor
            # ---------------------------
            if self.count % self.opt['dataloader_batch_size'] == 0:
                # sf = random.choice([1,2,3,4])
                self.sf = random.choice(self.scales)
                # self.count = 0  # optional
            self.count += 1
            H, W, _ = img_H.shape

            # ----------------------------
            # randomly crop the patch
            # ----------------------------
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_H = img_H[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]

            # ---------------------------
            # augmentation - flip, rotate
            # ---------------------------
            mode = np.random.randint(0, 8)
            patch_H = util.augment_img(patch_H, mode=mode)

            # ---------------------------
            # 2) kernel
            # ---------------------------
            r_value = random.randint(0, 7)
            if r_value > 3:
                k = utils_deblur.blurkernel_synthesis(h=25)  # motion blur
            else:
                sf_k = random.choice(self.scales)
                k = utils_sisr.gen_kernel(scale_factor=np.array(
                    [sf_k, sf_k]))  # Gaussian blur
                mode_k = random.randint(0, 7)
                k = util.augment_img(k, mode=mode_k)

            # ---------------------------
            # 3) noise level
            # ---------------------------
            if random.randint(0, 8) == 1:
                noise_level = 0 / 255.0
            else:
                noise_level = np.random.randint(0, self.sigma_max) / 255.0

            # ---------------------------
            # Low-quality image
            # ---------------------------
            img_L = ndimage.filters.convolve(patch_H,
                                             np.expand_dims(k, axis=2),
                                             mode='wrap')
            img_L = img_L[0::self.sf, 0::self.sf, ...]
            # add Gaussian noise
            img_L = util.uint2single(img_L) + np.random.normal(
                0, noise_level, img_L.shape)
            img_H = patch_H

        else:

            k = self.kernels[0, 0].astype(np.float64)  # validation kernel
            k /= np.sum(k)
            noise_level = 0. / 255.0  # validation noise level
            img_L = ndimage.filters.convolve(img_H,
                                             np.expand_dims(k, axis=2),
                                             mode='wrap')  # blur
            img_L = img_L[0::self.sf_validation, 0::self.sf_validation,
                          ...]  # downsampling
            img_L = util.uint2single(img_L) + np.random.normal(
                0, noise_level, img_L.shape)

        k = util.single2tensor3(np.expand_dims(np.float32(k), axis=2))
        img_H, img_L = util.uint2tensor3(img_H), util.single2tensor3(img_L)
        noise_level = torch.FloatTensor([noise_level]).view([1, 1, 1])

        return {
            'L': img_L,
            'H': img_H,
            'k': k,
            'sigma': noise_level,
            'sf': self.sf,
            'L_path': L_path,
            'H_path': H_path
        }
Exemplo n.º 16
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 0/255.0            # set AWGN noise level for LR image, default: 0, 
    noise_level_model = noise_level_img  # setnoise level of model, default 0
    model_name = 'drunet_color'          # set denoiser, | 'drunet_color' | 'ircnn_gray' | 'drunet_gray' | 'ircnn_color'
    testset_name = 'srbsd68'             # set test set,  'set5' | 'srbsd68'
    x8 = True                            # default: False, x8 to boost performance
    test_sf = [2]                        # set scale factor, default: [2, 3, 4], [2], [3], [4]
    iter_num = 24                        # set number of iterations, default: 24 for SISR
    modelSigma1 = 49                     # set sigma_1, default: 49
    classical_degradation = True         # set classical degradation or bicubic degradation

    show_img = False                     # default: False
    save_L = True                        # save LR image
    save_E = True                        # save estimated image
    save_LEH = False                     # save zoomed LR, E and H images

    task_current = 'sr'                  # 'sr' for super-resolution
    n_channels = 1 if 'gray' in model_name else 3  # fixed
    model_zoo = 'model_zoo'              # fixed
    testsets = 'testsets'                # fixed
    results = 'results'                  # fixed
    result_name = testset_name + '_' + task_current + '_' + model_name
    model_path = os.path.join(model_zoo, model_name+'.pth')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.cuda.empty_cache()

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images
    E_path = os.path.join(results, result_name)   # E_path, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
    logger = logging.getLogger(logger_name)

    # ----------------------------------------
    # load model
    # ----------------------------------------

    if 'drunet' in model_name:
        from models.network_unet import UNetRes as net
        model = net(in_nc=n_channels+1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose")
        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        for _, v in model.named_parameters():
            v.requires_grad = False
        model = model.to(device)
    elif 'ircnn' in model_name:
        from models.network_dncnn import IRCNN as net
        model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
        model25 = torch.load(model_path)
        former_idx = 0

    logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(model_name, noise_level_img, noise_level_model))
    logger.info('Model path: {:s}'.format(model_path))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    # --------------------------------
    # load kernel
    # --------------------------------

    # kernels = hdf5storage.loadmat(os.path.join('kernels', 'Levin09.mat'))['kernels']
    if classical_degradation:
        kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
    else:
        kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']

    test_results_ave = OrderedDict()
    test_results_ave['psnr_sf_k'] = []
    test_results_ave['psnr_y_sf_k'] = []

    for sf in test_sf:
        border = sf
        modelSigma2 = max(sf, noise_level_model*255.)
        k_num = 8 if classical_degradation else 1

        for k_index in range(k_num):
            logger.info('--------- sf:{:>1d} --k:{:>2d} ---------'.format(sf, k_index))
            test_results = OrderedDict()
            test_results['psnr'] = []
            test_results['psnr_y'] = []

            if not classical_degradation:  # for bicubic degradation
                k_index = sf-2
            k = kernels[0, k_index].astype(np.float64)

            util.surf(k) if show_img else None

            for idx, img in enumerate(L_paths):

                # --------------------------------
                # (1) get img_L
                # --------------------------------

                img_name, ext = os.path.splitext(os.path.basename(img))
                img_H = util.imread_uint(img, n_channels=n_channels)
                img_H = util.modcrop(img_H, sf)  # modcrop

                if classical_degradation:
                    img_L = sr.classical_degradation(img_H, k, sf)
                    util.imshow(img_L) if show_img else None
                    img_L = util.uint2single(img_L)
                else:
                    img_L = util.imresize_np(util.uint2single(img_H), 1/sf)

                np.random.seed(seed=0)  # for reproducibility
                img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN

                # --------------------------------
                # (2) get rhos and sigmas
                # --------------------------------

                rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255/255., noise_level_model), iter_num=iter_num, modelSigma1=modelSigma1, modelSigma2=modelSigma2, w=1)
                rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to(device)

                # --------------------------------
                # (3) initialize x, and pre-calculation
                # --------------------------------

                x = cv2.resize(img_L, (img_L.shape[1]*sf, img_L.shape[0]*sf), interpolation=cv2.INTER_CUBIC)
                if np.ndim(x)==2:
                    x = x[..., None]

                if classical_degradation:
                    x = sr.shift_pixel(x, sf)
                x = util.single2tensor4(x).to(device)

                img_L_tensor, k_tensor = util.single2tensor4(img_L), util.single2tensor4(np.expand_dims(k, 2))
                [k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor], device)
                FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf)

                # --------------------------------
                # (4) main iterations
                # --------------------------------

                for i in range(iter_num):

                    # --------------------------------
                    # step 1, FFT
                    # --------------------------------

                    tau = rhos[i].float().repeat(1, 1, 1, 1)
                    x = sr.data_solution(x.float(), FB, FBC, F2B, FBFy, tau, sf)

                    if 'ircnn' in model_name:
                        current_idx = np.int(np.ceil(sigmas[i].cpu().numpy()*255./2.)-1)
            
                        if current_idx != former_idx:
                            model.load_state_dict(model25[str(current_idx)], strict=True)
                            model.eval()
                            for _, v in model.named_parameters():
                                v.requires_grad = False
                            model = model.to(device)
                        former_idx = current_idx

                    # --------------------------------
                    # step 2, denoiser
                    # --------------------------------

                    if x8:
                        x = util.augment_img_tensor4(x, i % 8)
                        
                    if 'drunet' in model_name:
                        x = torch.cat((x, sigmas[i].float().repeat(1, 1, x.shape[2], x.shape[3])), dim=1)
                        x = utils_model.test_mode(model, x, mode=2, refield=32, min_size=256, modulo=16)
                    elif 'ircnn' in model_name:
                        x = model(x)

                    if x8:
                        if i % 8 == 3 or i % 8 == 5:
                            x = util.augment_img_tensor4(x, 8 - i % 8)
                        else:
                            x = util.augment_img_tensor4(x, i % 8)

                # --------------------------------
                # (3) img_E
                # --------------------------------

                img_E = util.tensor2uint(x)

                if save_E:
                    util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_'+model_name+'.png'))

                if n_channels == 1:
                    img_H = img_H.squeeze()

                # --------------------------------
                # (4) img_LEH
                # --------------------------------

                img_L = util.single2uint(img_L).squeeze()

                if save_LEH:
                    k_v = k/np.max(k)*1.0
                    if n_channels==1:
                        k_v = util.single2uint(k_v)
                    else:
                        k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, n_channels]))
                    k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
                    img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
                    img_I[:k_v.shape[0], -k_v.shape[1]:, ...] = k_v
                    img_I[:img_L.shape[0], :img_L.shape[1], ...] = img_L
                    util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None
                    util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LEH.png'))

                if save_L:
                    util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LR.png'))

                psnr = util.calculate_psnr(img_E, img_H, border=border)
                test_results['psnr'].append(psnr)
                logger.info('{:->4d}--> {:>10s} -- sf:{:>1d} --k:{:>2d} PSNR: {:.2f}dB'.format(idx+1, img_name+ext, sf, k_index, psnr))

                if n_channels == 3:
                    img_E_y = util.rgb2ycbcr(img_E, only_y=True)
                    img_H_y = util.rgb2ycbcr(img_H, only_y=True)
                    psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
                    test_results['psnr_y'].append(psnr_y)

            # --------------------------------
            # Average PSNR for all kernels
            # --------------------------------

            ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr'])
            logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_k))
            test_results_ave['psnr_sf_k'].append(ave_psnr_k)

            if n_channels == 3:  # RGB image
                ave_psnr_y_k = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
                logger.info('------> Average PSNR(Y) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_y_k))
                test_results_ave['psnr_y_sf_k'].append(ave_psnr_y_k)

    # ---------------------------------------
    # Average PSNR for all sf and kernels
    # ---------------------------------------

    ave_psnr_sf_k = sum(test_results_ave['psnr_sf_k']) / len(test_results_ave['psnr_sf_k'])
    logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_sf_k))
    if n_channels == 3:
        ave_psnr_y_sf_k = sum(test_results_ave['psnr_y_sf_k']) / len(test_results_ave['psnr_y_sf_k'])
        logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_y_sf_k))
Exemplo n.º 17
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 30  # noise level for noisy image
    noise_level_model = noise_level_img  # noise level for model
    model_name = 'ffdnet_color'  # 'ffdnet_gray' | 'ffdnet_color' | 'ffdnet_color_clip' | 'ffdnet_gray_clip'
    testset_name = 'CBSD68'  # test set,  'bsd68' | 'cbsd68' | 'set12'
    need_degradation = True  # default: True
    show_img = False  # default: False

    task_current = 'dn'  # 'dn' for denoising | 'sr' for super-resolution
    sf = 1  # unused for denoising
    if 'color' in model_name:
        n_channels = 3  # setting for color image
        nc = 96  # setting for color image
        nb = 12  # setting for color image
    else:
        n_channels = 1  # setting for grayscale image
        nc = 64  # setting for grayscale image
        nb = 15  # setting for grayscale image
    if 'clip' in model_name:
        use_clip = True  # clip the intensities into range of [0, 1]
    else:
        use_clip = False
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + model_name
    border = sf if task_current == 'sr' else 0  # shave boader to calculate PSNR and SSIM
    model_path = os.path.join(model_pool, model_name + '.pth')

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    H_path = L_path  # H_path, for High-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    if H_path == L_path:
        need_degradation = True
    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    need_H = True if H_path is not None else False
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_ffdnet import FFDNet as net
    model = net(in_nc=n_channels,
                out_nc=n_channels,
                nc=nc,
                nb=nb,
                act_mode='R')
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []

    logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)
    H_paths = util.get_image_paths(H_path) if need_H else None

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------

        img_name, ext = os.path.splitext(os.path.basename(img))
        # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)

        if need_degradation:  # degradation process
            np.random.seed(seed=0)  # for reproducibility
            img_L += np.random.normal(0, noise_level_img / 255., img_L.shape)
            if use_clip:
                img_L = util.uint2single(util.single2uint(img_L))

        util.imshow(util.single2uint(img_L),
                    title='Noisy image with noise level {}'.format(
                        noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        img_L = img_L.to(device)

        sigma = torch.full((1, 1, 1, 1),
                           noise_level_model / 255.).type_as(img_L)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------

        img_E = model(img_L, sigma)
        img_E = util.tensor2uint(img_E)

        if need_H:

            # --------------------------------
            # (3) img_H
            # --------------------------------
            img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
            img_H = img_H.squeeze()

            # --------------------------------
            # PSNR and SSIM
            # --------------------------------

            psnr = util.calculate_psnr(img_E, img_H, border=border)
            ssim = util.calculate_ssim(img_E, img_H, border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(
                img_name + ext, psnr, ssim))
            util.imshow(np.concatenate([img_E, img_H], axis=1),
                        title='Recovered / Ground-truth') if show_img else None

        # ------------------------------------
        # save results
        # ------------------------------------

        util.imsave(img_E, os.path.join(E_path, img_name + ext))

    if need_H:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        logger.info(
            'Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.
            format(result_name, ave_psnr, ave_ssim))
Exemplo n.º 18
0
    def __getitem__(self, index):
        # -------------------------------------
        # get H image
        # -------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)

        L_path = H_path

        if self.opt['phase'] == 'train':
            """
            # --------------------------------
            # get L/H/M patch pairs
            # --------------------------------
            """
            H, W = img_H.shape[:2]

            # ---------------------------------
            # randomly crop the patch
            # ---------------------------------
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_H = img_H[rnd_h:rnd_h + self.patch_size,
                            rnd_w:rnd_w + self.patch_size, :]

            # ---------------------------------
            # augmentation - flip, rotate
            # ---------------------------------
            mode = np.random.randint(0, 8)
            patch_H = util.augment_img(patch_H, mode=mode)

            # ---------------------------------
            # HWC to CHW, numpy(uint) to tensor
            # ---------------------------------
            img_H = util.uint2tensor3(patch_H)
            img_L = img_H.clone()

            # ---------------------------------
            # get noise level
            # ---------------------------------
            # noise_level = torch.FloatTensor([np.random.randint(self.sigma_min, self.sigma_max)])/255.0
            noise_level = torch.FloatTensor(
                [np.random.uniform(self.sigma_min, self.sigma_max)]) / 255.0

            # ---------------------------------
            # add noise
            # ---------------------------------
            noise = torch.randn(img_L.size()).mul_(noise_level).float()
            img_L.add_(noise)

        else:
            """
            # --------------------------------
            # get L/H/sigma image pairs
            # --------------------------------
            """
            img_H = util.uint2single(img_H)
            img_L = np.copy(img_H)
            np.random.seed(seed=0)
            img_L += np.random.normal(0, self.sigma_test / 255.0, img_L.shape)
            noise_level = torch.FloatTensor([self.sigma_test / 255.0])

            # ---------------------------------
            # L/H image pairs
            # ---------------------------------
            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(
                img_L)

        noise_level = noise_level.unsqueeze(1).unsqueeze(1)

        return {
            'L': img_L,
            'H': img_H,
            'C': noise_level,
            'L_path': L_path,
            'H_path': H_path
        }
Exemplo n.º 19
0
    def __getitem__(self, index):

        # ------------------------------------
        # get H image
        # ------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)
        img_H = util.uint2single(img_H)

        # ------------------------------------
        # modcrop for SR
        # ------------------------------------
        img_H = util.modcrop(img_H, self.sf)

        # ------------------------------------
        # sythesize L image via matlab's bicubic
        # ------------------------------------
        H, W, _ = img_H.shape
        img_L = util.imresize_np(img_H, 1 / self.sf, True)

        if self.opt['phase'] == 'train':
            """
            # --------------------------------
            # get L/H patch pairs
            # --------------------------------
            """
            H, W, C = img_L.shape

            # --------------------------------
            # randomly crop L patch
            # --------------------------------
            rnd_h = random.randint(0, max(0, H - self.L_size))
            rnd_w = random.randint(0, max(0, W - self.L_size))
            img_L = img_L[rnd_h:rnd_h + self.L_size,
                          rnd_w:rnd_w + self.L_size, :]

            # --------------------------------
            # crop corresponding H patch
            # --------------------------------
            rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf)
            img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size,
                          rnd_w_H:rnd_w_H + self.patch_size, :]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = np.random.randint(0, 8)
            img_L, img_H = util.augment_img(
                img_L, mode=mode), util.augment_img(img_H, mode=mode)

            # --------------------------------
            # get patch pairs
            # --------------------------------
            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(
                img_L)

            # --------------------------------
            # select noise level and get Gaussian noise
            # --------------------------------
            if random.random() < 0.1:
                noise_level = torch.zeros(1).float()
            else:
                noise_level = torch.FloatTensor([
                    np.random.uniform(self.sigma_min, self.sigma_max)
                ]) / 255.0
                # noise_level = torch.rand(1)*50/255.0
                # noise_level = torch.min(torch.from_numpy(np.float32([7*np.random.chisquare(2.5)/255.0])),torch.Tensor([50./255.]))

        else:

            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(
                img_L)

            noise_level = torch.FloatTensor([self.sigma_test])

        # ------------------------------------
        # add noise
        # ------------------------------------
        noise = torch.randn(img_L.size()).mul_(noise_level).float()
        img_L.add_(noise)

        # ------------------------------------
        # get noise level map M
        # ------------------------------------
        M_vector = noise_level.unsqueeze(1).unsqueeze(1)
        M = M_vector.repeat(1, img_L.size()[-2], img_L.size()[-1])
        """
        # -------------------------------------
        # concat L and noise level map M
        # -------------------------------------
        """
        img_L = torch.cat((img_L, M), 0)

        L_path = H_path

        return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}
Exemplo n.º 20
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 15  # set AWGN noise level for noisy image
    noise_level_model = noise_level_img  # set noise level for model
    model_name = 'drunet_gray'  # set denoiser model, 'drunet_gray' | 'drunet_color'
    testset_name = 'bsd68'  # set test set,  'bsd68' | 'cbsd68' | 'set12'
    x8 = False  # default: False, x8 to boost performance
    show_img = False  # default: False
    border = 0  # shave boader to calculate PSNR and SSIM

    if 'color' in model_name:
        n_channels = 3  # 3 for color image
    else:
        n_channels = 1  # 1 for grayscale image

    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    task_current = 'dn'  # 'dn' for denoising
    result_name = testset_name + '_' + task_current + '_' + model_name

    model_path = os.path.join(model_pool, model_name + '.pth')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.cuda.empty_cache()

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_unet import UNetRes as net
    model = net(in_nc=n_channels + 1,
                out_nc=n_channels,
                nc=[64, 128, 256, 512],
                nb=4,
                act_mode='R',
                downsample_mode="strideconv",
                upsample_mode="convtranspose")
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []

    logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------

        img_name, ext = os.path.splitext(os.path.basename(img))
        # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_H = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_H)

        # Add noise without clipping
        np.random.seed(seed=0)  # for reproducibility
        img_L += np.random.normal(0, noise_level_img / 255., img_L.shape)

        util.imshow(util.single2uint(img_L),
                    title='Noisy image with noise level {}'.format(
                        noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        img_L = torch.cat(
            (img_L, torch.FloatTensor([noise_level_model / 255.]).repeat(
                1, 1, img_L.shape[2], img_L.shape[3])),
            dim=1)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------

        if not x8 and img_L.size(2) // 8 == 0 and img_L.size(3) // 8 == 0:
            img_E = model(img_L)
        elif not x8 and (img_L.size(2) // 8 != 0 or img_L.size(3) // 8 != 0):
            img_E = utils_model.test_mode(model, img_L, refield=64, mode=5)
        elif x8:
            img_E = utils_model.test_mode(model, img_L, mode=3)

        img_E = util.tensor2uint(img_E)

        # --------------------------------
        # PSNR and SSIM
        # --------------------------------

        if n_channels == 1:
            img_H = img_H.squeeze()
        psnr = util.calculate_psnr(img_E, img_H, border=border)
        ssim = util.calculate_ssim(img_E, img_H, border=border)
        test_results['psnr'].append(psnr)
        test_results['ssim'].append(ssim)
        logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(
            img_name + ext, psnr, ssim))

        # ------------------------------------
        # save results
        # ------------------------------------

        util.imsave(img_E, os.path.join(E_path, img_name + ext))

    ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
    ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
    logger.info(
        'Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(
            result_name, ave_psnr, ave_ssim))
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    model_name = 'dncnn3'  # 'dncnn3'- can be used for blind Gaussian denoising, JPEG deblocking (quality factor 5-100) and super-resolution (x234)

    # important!
    testset_name = 'bsd68'  # test set, low-quality grayscale/color JPEG images
    n_channels = 1  # set 1 for grayscale image, set 3 for color image

    x8 = False  # default: False, x8 to boost performance
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + model_name  # fixed
    L_path = os.path.join(
        testsets, testset_name
    )  # L_path, for Low-quality grayscale/Y-channel JPEG images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    model_pool = 'model_zoo'  # fixed
    model_path = os.path.join(model_pool, model_name + '.pth')
    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_dncnn import DnCNN as net
    model = net(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='R')
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------
        img_name, ext = os.path.splitext(os.path.basename(img))
        logger.info('{:->4d}--> {:>10s}'.format(idx + 1, img_name + ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)
        if n_channels == 3:
            ycbcr = util.rgb2ycbcr(img_L, False)
            img_L = ycbcr[..., 0:1]
        img_L = util.single2tensor4(img_L)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------
        if not x8:
            img_E = model(img_L)
        else:
            img_E = utils_model.test_mode(model, img_L, mode=3)

        img_E = util.tensor2single(img_E)
        if n_channels == 3:
            ycbcr[..., 0] = img_E
            img_E = util.ycbcr2rgb(ycbcr)
        img_E = util.single2uint(img_E)

        # ------------------------------------
        # save results
        # ------------------------------------
        util.imsave(img_E, os.path.join(E_path, img_name + '.png'))
Exemplo n.º 22
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------
    model_name = 'usrnet'  # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
    testset_name = 'set5'  # test set,  'set5' | 'srbsd68'
    need_degradation = True  # default: True
    sf = 4  # scale factor, only from {2, 3, 4}
    show_img = False  # default: False
    save_L = True  # save LR image
    save_E = True  # save estimated image

    # load approximated bicubic kernels
    #kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_bicubicx234.mat'))['kernels']
    kernels = loadmat(os.path.join('kernels',
                                   'kernels_bicubicx234.mat'))['kernels']
    kernel = kernels[0, sf - 2].astype(np.float64)
    kernel = util.single2tensor4(kernel[..., np.newaxis])

    task_current = 'sr'  # fixed, 'sr' for super-resolution
    n_channels = 3  # fixed, 3 for color image
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    noise_level_img = 0  # fixed: 0, noise level for LR image
    noise_level_model = noise_level_img  # fixed, noise level of model, default 0
    result_name = testset_name + '_' + model_name + '_bicubic'
    border = sf if task_current == 'sr' else 0  # shave boader to calculate PSNR and SSIM
    model_path = os.path.join(model_pool, model_name + '.pth')

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------
    L_path = os.path.join(
        testsets, testset_name)  # L_path, fixed, for Low-quality images
    H_path = L_path  # H_path, 'None' | L_path, for High-quality images
    E_path = os.path.join(results,
                          result_name)  # E_path, fixed, for Estimated images
    util.mkdir(E_path)

    if H_path == L_path:
        need_degradation = True
    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    need_H = True if H_path is not None else False
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------
    from models.network_usrnet import USRNet as net  # for pytorch version <= 1.7.1
    # from models.network_usrnet_v1 import USRNet as net  # for pytorch version >=1.8.1

    if 'tiny' in model_name:
        model = net(n_iter=6,
                    h_nc=32,
                    in_nc=4,
                    out_nc=3,
                    nc=[16, 32, 64, 64],
                    nb=2,
                    act_mode="R",
                    downsample_mode='strideconv',
                    upsample_mode="convtranspose")
    else:
        model = net(n_iter=8,
                    h_nc=64,
                    in_nc=4,
                    out_nc=3,
                    nc=[64, 128, 256, 512],
                    nb=2,
                    act_mode="R",
                    downsample_mode='strideconv',
                    upsample_mode="convtranspose")

    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for key, v in model.named_parameters():
        v.requires_grad = False

    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []
    test_results['psnr_y'] = []
    test_results['ssim_y'] = []

    logger.info('model_name:{}, image sigma:{}'.format(model_name,
                                                       noise_level_img))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)
    H_paths = util.get_image_paths(H_path) if need_H else None

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------
        img_name, ext = os.path.splitext(os.path.basename(img))
        logger.info('{:->4d}--> {:>10s}'.format(idx + 1, img_name + ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)

        # degradation process, bicubic downsampling
        if need_degradation:
            img_L = util.modcrop(img_L, sf)
            img_L = util.imresize_np(img_L, 1 / sf)

            # img_L = util.uint2single(util.single2uint(img_L))
            # np.random.seed(seed=0)  # for reproducibility
            # img_L += np.random.normal(0, noise_level_img/255., img_L.shape)

        w, h = img_L.shape[:2]

        if save_L:
            util.imsave(
                util.single2uint(img_L),
                os.path.join(E_path, img_name + '_LR_x' + str(sf) + '.png'))

        img = cv2.resize(img_L, (sf * h, sf * w),
                         interpolation=cv2.INTER_NEAREST)
        img = utils_deblur.wrap_boundary_liu(img, [
            int(np.ceil(sf * w / 8 + 2) * 8),
            int(np.ceil(sf * h / 8 + 2) * 8)
        ])
        img_wrap = sr.downsample_np(img, sf, center=False)
        img_wrap[:w, :h, :] = img_L
        img_L = img_wrap

        util.imshow(util.single2uint(img_L),
                    title='LR image with noise level {}'.format(
                        noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------
        sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1])
        [img_L, kernel,
         sigma] = [el.to(device) for el in [img_L, kernel, sigma]]

        img_E = model(img_L, kernel, sf, sigma)

        img_E = util.tensor2uint(img_E)
        img_E = img_E[:sf * w, :sf * h, :]

        if need_H:

            # --------------------------------
            # (3) img_H
            # --------------------------------
            img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
            img_H = img_H.squeeze()
            img_H = util.modcrop(img_H, sf)

            # --------------------------------
            # PSNR and SSIM
            # --------------------------------
            psnr = util.calculate_psnr(img_E, img_H, border=border)
            ssim = util.calculate_ssim(img_E, img_H, border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(
                img_name + ext, psnr, ssim))
            util.imshow(np.concatenate([img_E, img_H], axis=1),
                        title='Recovered / Ground-truth') if show_img else None

            if np.ndim(img_H) == 3:  # RGB image
                img_E_y = util.rgb2ycbcr(img_E, only_y=True)
                img_H_y = util.rgb2ycbcr(img_H, only_y=True)
                psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
                ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border)
                test_results['psnr_y'].append(psnr_y)
                test_results['ssim_y'].append(ssim_y)

        # ------------------------------------
        # save results
        # ------------------------------------
        if save_E:
            util.imsave(
                img_E,
                os.path.join(
                    E_path,
                    img_name + '_x' + str(sf) + '_' + model_name + '.png'))

    if need_H:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        logger.info(
            'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'
            .format(result_name, sf, ave_psnr, ave_ssim))
        if np.ndim(img_H) == 3:
            ave_psnr_y = sum(test_results['psnr_y']) / len(
                test_results['psnr_y'])
            ave_ssim_y = sum(test_results['ssim_y']) / len(
                test_results['ssim_y'])
            logger.info(
                'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'
                .format(result_name, sf, ave_psnr_y, ave_ssim_y))
Exemplo n.º 23
0
criterion = nn.MSELoss(reduction='sum')
lr = 1e-5
epochs = 50

model_path = os.path.join(model_pool, model_name+'.pth')
test_path = os.path.join(test_im)
train_path = os.path.join(train_im)

# load model
model = DnCNN(in_nc=n_channels, out_nc=n_channels, nc=64, nb=17, act_mode='R')
model.load_state_dict(torch.load(model_path), strict=True)
model = model.to(device)
model.eval()

# load test image  
x = util.imread_uint(test_path, n_channels=n_channels)
orig_im = x.squeeze()
x = util.uint2single(x)
np.random.seed(seed=0)  # for reproducibility
y = x + np.random.normal(0, sigma/255., x.shape) # add gaussian noise
y = util.single2tensor4(y)
y = y.to(device)

# denoise the image to compare PSNR before and after adaptation
with torch.no_grad():
  x_ = model(y)

# compute PSNR
denoised_im = util.tensor2uint(x_)
prev_psnr = util.calculate_psnr(denoised_im, orig_im, border=0)
Exemplo n.º 24
0
Arquivo: test.py Projeto: zjucmx/RFDN
def main():

    utils_logger.logger_info('AIM-track', log_path='AIM-track.log')
    logger = logging.getLogger('AIM-track')

    # --------------------------------
    # basic settings
    # --------------------------------
    testsets = 'DIV2K'
    testset_L = 'DIV2K_valid_LR_bicubic'
    #testset_L = 'DIV2K_test_LR_bicubic'

    torch.cuda.current_device()
    torch.cuda.empty_cache()
    #torch.backends.cudnn.benchmark = True
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # --------------------------------
    # load model
    # --------------------------------
    model_path = os.path.join('trained_model', 'RFDN_AIM.pth')
    model = RFDN()
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)

    # number of parameters
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    # --------------------------------
    # read image
    # --------------------------------
    L_folder = os.path.join(testsets, testset_L, 'X4')
    E_folder = os.path.join(testsets, testset_L+'_results')
    util.mkdir(E_folder)

    # record PSNR, runtime
    test_results = OrderedDict()
    test_results['runtime'] = []

    logger.info(L_folder)
    logger.info(E_folder)
    idx = 0

    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

    img_SR = []
    for img in util.get_image_paths(L_folder):

        # --------------------------------
        # (1) img_L
        # --------------------------------
        idx += 1
        img_name, ext = os.path.splitext(os.path.basename(img))
        logger.info('{:->4d}--> {:>10s}'.format(idx, img_name+ext))

        img_L = util.imread_uint(img, n_channels=3)
        img_L = util.uint2tensor4(img_L)
        img_L = img_L.to(device)

        start.record()
        img_E = model(img_L)
        end.record()
        torch.cuda.synchronize()
        test_results['runtime'].append(start.elapsed_time(end))  # milliseconds

        # --------------------------------
        # (2) img_E
        # --------------------------------
        img_E = util.tensor2uint(img_E)
        img_SR.append(img_E)

        # --------------------------------
        # (3) save results
        # --------------------------------
        #util.imsave(img_E, os.path.join(E_folder, img_name+ext))

    ave_runtime = sum(test_results['runtime']) / len(test_results['runtime']) / 1000.0
    logger.info('------> Average runtime of ({}) is : {:.6f} seconds'.format(L_folder, ave_runtime))

    # --------------------------------
    # (4) calculate psnr
    # --------------------------------
    '''
Exemplo n.º 25
0
def main():

    utils_logger.logger_info('efficientsr_challenge',
                             log_path='efficientsr_challenge.log')
    logger = logging.getLogger('efficientsr_challenge')

    #    print(torch.__version__)               # pytorch version
    #    print(torch.version.cuda)              # cuda version
    #    print(torch.backends.cudnn.version())  # cudnn version

    # --------------------------------
    # basic settings
    # --------------------------------
    model_names = ['msrresnet', 'imdn']
    model_id = 1  # set the model name
    model_name = model_names[model_id]
    logger.info('{:>16s} : {:s}'.format('Model Name', model_name))

    testsets = 'testsets'  # set path of testsets
    testset_L = 'DIV2K_valid_LR'  # set current testing dataset; 'DIV2K_test_LR'
    testset_L = 'set12'

    save_results = True
    print_modelsummary = True  # set False when calculating `Max Memery` and `Runtime`

    torch.cuda.set_device(0)  # set GPU ID
    logger.info('{:>16s} : {:<d}'.format('GPU ID',
                                         torch.cuda.current_device()))
    torch.cuda.empty_cache()
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # --------------------------------
    # define network and load model
    # --------------------------------
    if model_name == 'msrresnet':
        from models.network_msrresnet import MSRResNet1 as net
        model = net(in_nc=3, out_nc=3, nc=64, nb=16,
                    upscale=4)  # define network
        model_path = os.path.join('model_zoo',
                                  'msrresnet_x4_psnr.pth')  # set model path
    elif model_name == 'imdn':
        from models.network_imdn import IMDN as net
        model = net(in_nc=3,
                    out_nc=3,
                    nc=64,
                    nb=8,
                    upscale=4,
                    act_mode='L',
                    upsample_mode='pixelshuffle')  # define network
        model_path = os.path.join('model_zoo', 'imdn_x4.pth')  # set model path

    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)

    # --------------------------------
    # print model summary
    # --------------------------------
    if print_modelsummary:
        from utils.utils_modelsummary import get_model_activation, get_model_flops
        input_dim = (3, 256, 256)  # set the input dimension

        activations, num_conv2d = get_model_activation(model, input_dim)
        logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations',
                                                   activations / 10**6))
        logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d))

        flops = get_model_flops(model, input_dim, False)
        logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops / 10**9))

        num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
        logger.info('{:>16s} : {:<.4f} [M]'.format('#Params',
                                                   num_parameters / 10**6))

    # --------------------------------
    # read image
    # --------------------------------
    L_path = os.path.join(testsets, testset_L)
    E_path = os.path.join(testsets, testset_L + '_' + model_name)
    util.mkdir(E_path)

    # record runtime
    test_results = OrderedDict()
    test_results['runtime'] = []

    logger.info('{:>16s} : {:s}'.format('Input Path', L_path))
    logger.info('{:>16s} : {:s}'.format('Output Path', E_path))
    idx = 0

    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

    for img in util.get_image_paths(L_path):

        # --------------------------------
        # (1) img_L
        # --------------------------------
        idx += 1
        img_name, ext = os.path.splitext(os.path.basename(img))
        logger.info('{:->4d}--> {:>10s}'.format(idx, img_name + ext))

        img_L = util.imread_uint(img, n_channels=3)
        img_L = util.uint2tensor4(img_L)
        torch.cuda.empty_cache()
        img_L = img_L.to(device)

        start.record()
        img_E = model(img_L)
        # logger.info('{:>16s} : {:<.3f} [M]'.format('Max Memery', torch.cuda.max_memory_allocated(torch.cuda.current_device())/1024**2))  # Memery
        end.record()
        torch.cuda.synchronize()
        test_results['runtime'].append(start.elapsed_time(end))  # milliseconds

        #        torch.cuda.synchronize()
        #        start = time.time()
        #        img_E = model(img_L)
        #        torch.cuda.synchronize()
        #        end = time.time()
        #        test_results['runtime'].append(end-start)  # seconds

        # --------------------------------
        # (2) img_E
        # --------------------------------
        img_E = util.tensor2uint(img_E)

        if save_results:
            util.imsave(img_E, os.path.join(E_path, img_name + ext))
    ave_runtime = sum(test_results['runtime']) / len(
        test_results['runtime']) / 1000.0
    logger.info('------> Average runtime of ({}) is : {:.6f} seconds'.format(
        L_path, ave_runtime))
Exemplo n.º 26
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 0  # default: 0, noise level for LR image
    noise_level_model = noise_level_img  # noise level for model
    model_name = 'srmdnf_x4'  # 'srmd_x2' | 'srmd_x3' | 'srmd_x4' | 'srmdnf_x2' | 'srmdnf_x3' | 'srmdnf_x4'
    testset_name = 'set5'  # test set,  'set5' | 'srbsd68'
    sf = [int(s) for s in re.findall(r'\d+', model_name)][0]  # scale factor
    x8 = False  # default: False, x8 to boost performance
    need_degradation = True  # default: True, use degradation model to generate LR image
    show_img = False  # default: False

    srmd_pca_path = os.path.join('kernels', 'srmd_pca_matlab.mat')
    task_current = 'sr'  # 'dn' for denoising | 'sr' for super-resolution
    n_channels = 3  # fixed
    in_nc = 18 if 'nf' in model_name else 19
    nc = 128  # fixed, number of channels
    nb = 12  # fixed, number of conv layers
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + model_name
    border = sf if task_current == 'sr' else 0  # shave boader to calculate PSNR and SSIM
    model_path = os.path.join(model_pool, model_name + '.pth')

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    H_path = L_path  # H_path, for High-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    if H_path == L_path:
        need_degradation = True
    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    need_H = True if H_path is not None else False
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_srmd import SRMD as net
    model = net(in_nc=in_nc,
                out_nc=n_channels,
                nc=nc,
                nb=nb,
                upscale=sf,
                act_mode='R',
                upsample_mode='pixelshuffle')
    model.load_state_dict(torch.load(model_path), strict=False)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []
    test_results['psnr_y'] = []
    test_results['ssim_y'] = []

    logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)
    H_paths = util.get_image_paths(H_path) if need_H else None

    # ----------------------------------------
    # kernel and PCA reduced feature
    # ----------------------------------------

    # kernel = sr.anisotropic_Gaussian(ksize=15, theta=np.pi, l1=4, l2=4)
    kernel = utils_deblur.fspecial('gaussian', 15,
                                   0.01)  # Gaussian kernel, delta kernel 0.01

    P = loadmat(srmd_pca_path)['P']
    degradation_vector = np.dot(P, np.reshape(kernel, (-1), order="F"))
    if 'nf' not in model_name:  # noise-free SR
        degradation_vector = np.append(degradation_vector,
                                       noise_level_model / 255.)
    degradation_vector = torch.from_numpy(degradation_vector).view(
        1, -1, 1, 1).float()

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------

        img_name, ext = os.path.splitext(os.path.basename(img))
        # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)

        # degradation process, blur + bicubic downsampling + Gaussian noise
        if need_degradation:
            img_L = util.modcrop(img_L, sf)
            img_L = sr.srmd_degradation(
                img_L, kernel, sf
            )  # equivalent to bicubic degradation if kernel is a delta kernel
            np.random.seed(seed=0)  # for reproducibility
            img_L += np.random.normal(0, noise_level_img / 255., img_L.shape)

        util.imshow(util.single2uint(img_L),
                    title='LR image with noise level {}'.format(
                        noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        degradation_map = degradation_vector.repeat(1, 1, img_L.size(-2),
                                                    img_L.size(-1))
        img_L = torch.cat((img_L, degradation_map), dim=1)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------

        if not x8:
            img_E = model(img_L)
        else:
            img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf)

        img_E = util.tensor2uint(img_E)

        if need_H:

            # --------------------------------
            # (3) img_H
            # --------------------------------

            img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
            img_H = img_H.squeeze()
            img_H = util.modcrop(img_H, sf)

            # --------------------------------
            # PSNR and SSIM
            # --------------------------------

            psnr = util.calculate_psnr(img_E, img_H, border=border)
            ssim = util.calculate_ssim(img_E, img_H, border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(
                img_name + ext, psnr, ssim))
            util.imshow(np.concatenate([img_E, img_H], axis=1),
                        title='Recovered / Ground-truth') if show_img else None

            if np.ndim(img_H) == 3:  # RGB image
                img_E_y = util.rgb2ycbcr(img_E, only_y=True)
                img_H_y = util.rgb2ycbcr(img_H, only_y=True)
                psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
                ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border)
                test_results['psnr_y'].append(psnr_y)
                test_results['ssim_y'].append(ssim_y)

        # ------------------------------------
        # save results
        # ------------------------------------

        util.imsave(img_E, os.path.join(E_path, img_name + '.png'))

    if need_H:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        logger.info(
            'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'
            .format(result_name, sf, ave_psnr, ave_ssim))
        if np.ndim(img_H) == 3:
            ave_psnr_y = sum(test_results['psnr_y']) / len(
                test_results['psnr_y'])
            ave_ssim_y = sum(test_results['ssim_y']) / len(
                test_results['ssim_y'])
            logger.info(
                'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'
                .format(result_name, sf, ave_psnr_y, ave_ssim_y))
Exemplo n.º 27
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 7.65 / 255.0  # default: 0, noise level for LR image
    noise_level_model = noise_level_img  # noise level of model, default 0
    model_name = 'drunet_gray'  # 'drunet_gray' | 'drunet_color' | 'ircnn_gray' | 'ircnn_color'
    testset_name = 'Set3C'  # test set,  'set5' | 'srbsd68'
    x8 = True  # default: False, x8 to boost performance
    iter_num = 8  # number of iterations
    modelSigma1 = 49
    modelSigma2 = noise_level_model * 255.

    show_img = False  # default: False
    save_L = True  # save LR image
    save_E = True  # save estimated image
    save_LEH = False  # save zoomed LR, E and H images
    border = 0

    # --------------------------------
    # load kernel
    # --------------------------------

    kernels = hdf5storage.loadmat(os.path.join('kernels',
                                               'Levin09.mat'))['kernels']

    sf = 1
    task_current = 'deblur'  # 'deblur' for deblurring
    n_channels = 3 if 'color' in model_name else 1  # fixed
    model_zoo = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + task_current + '_' + model_name
    model_path = os.path.join(model_zoo, model_name + '.pth')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.cuda.empty_cache()

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    # ----------------------------------------
    # load model
    # ----------------------------------------

    if 'drunet' in model_name:
        from models.network_unet import UNetRes as net
        model = net(in_nc=n_channels + 1,
                    out_nc=n_channels,
                    nc=[64, 128, 256, 512],
                    nb=4,
                    act_mode='R',
                    downsample_mode="strideconv",
                    upsample_mode="convtranspose")
        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        for _, v in model.named_parameters():
            v.requires_grad = False
        model = model.to(device)
    elif 'ircnn' in model_name:
        from models.network_dncnn import IRCNN as net
        model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
        model25 = torch.load(model_path)
        former_idx = 0

    logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info('Model path: {:s}'.format(model_path))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    test_results_ave = OrderedDict()
    test_results_ave['psnr'] = []  # record average PSNR for each kernel

    for k_index in range(kernels.shape[1]):

        logger.info('-------k:{:>2d} ---------'.format(k_index))
        test_results = OrderedDict()
        test_results['psnr'] = []
        k = kernels[0, k_index].astype(np.float64)
        util.imshow(k) if show_img else None

        for idx, img in enumerate(L_paths):

            # --------------------------------
            # (1) get img_L
            # --------------------------------

            img_name, ext = os.path.splitext(os.path.basename(img))
            img_H = util.imread_uint(img, n_channels=n_channels)
            img_H = util.modcrop(img_H, 8)  # modcrop

            img_L = ndimage.filters.convolve(img_H,
                                             np.expand_dims(k, axis=2),
                                             mode='wrap')
            util.imshow(img_L) if show_img else None
            img_L = util.uint2single(img_L)

            np.random.seed(seed=0)  # for reproducibility
            img_L += np.random.normal(0, noise_level_img,
                                      img_L.shape)  # add AWGN

            # --------------------------------
            # (2) get rhos and sigmas
            # --------------------------------

            rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255 / 255.,
                                                       noise_level_model),
                                             iter_num=iter_num,
                                             modelSigma1=modelSigma1,
                                             modelSigma2=modelSigma2,
                                             w=1.0)
            rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(
                sigmas).to(device)

            # --------------------------------
            # (3) initialize x, and pre-calculation
            # --------------------------------

            x = util.single2tensor4(img_L).to(device)

            img_L_tensor, k_tensor = util.single2tensor4(
                img_L), util.single2tensor4(np.expand_dims(k, 2))
            [k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor],
                                                     device)
            FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf)

            # --------------------------------
            # (4) main iterations
            # --------------------------------

            for i in range(iter_num):

                # --------------------------------
                # step 1, FFT
                # --------------------------------

                tau = rhos[i].float().repeat(1, 1, 1, 1)
                x = sr.data_solution(x, FB, FBC, F2B, FBFy, tau, sf)

                if 'ircnn' in model_name:
                    current_idx = np.int(
                        np.ceil(sigmas[i].cpu().numpy() * 255. / 2.) - 1)

                    if current_idx != former_idx:
                        model.load_state_dict(model25[str(current_idx)],
                                              strict=True)
                        model.eval()
                        for _, v in model.named_parameters():
                            v.requires_grad = False
                        model = model.to(device)
                    former_idx = current_idx

                # --------------------------------
                # step 2, denoiser
                # --------------------------------

                if x8:
                    x = util.augment_img_tensor4(x, i % 8)

                if 'drunet' in model_name:
                    x = torch.cat((x, sigmas[i].float().repeat(
                        1, 1, x.shape[2], x.shape[3])),
                                  dim=1)
                    x = utils_model.test_mode(model,
                                              x,
                                              mode=2,
                                              refield=32,
                                              min_size=256,
                                              modulo=16)
                elif 'ircnn' in model_name:
                    x = model(x)

                if x8:
                    if i % 8 == 3 or i % 8 == 5:
                        x = util.augment_img_tensor4(x, 8 - i % 8)
                    else:
                        x = util.augment_img_tensor4(x, i % 8)

            # --------------------------------
            # (3) img_E
            # --------------------------------

            img_E = util.tensor2uint(x)
            if n_channels == 1:
                img_H = img_H.squeeze()

            if save_E:
                util.imsave(
                    img_E,
                    os.path.join(
                        E_path, img_name + '_k' + str(k_index) + '_' +
                        model_name + '.png'))

            # --------------------------------
            # (4) img_LEH
            # --------------------------------

            if save_LEH:
                img_L = util.single2uint(img_L)
                k_v = k / np.max(k) * 1.0
                k_v = util.single2uint(np.tile(k_v[..., np.newaxis],
                                               [1, 1, 3]))
                k_v = cv2.resize(k_v, (3 * k_v.shape[1], 3 * k_v.shape[0]),
                                 interpolation=cv2.INTER_NEAREST)
                img_I = cv2.resize(img_L,
                                   (sf * img_L.shape[1], sf * img_L.shape[0]),
                                   interpolation=cv2.INTER_NEAREST)
                img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v
                img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L
                util.imshow(np.concatenate([img_I, img_E, img_H], axis=1),
                            title='LR / Recovered / Ground-truth'
                            ) if show_img else None
                util.imsave(
                    np.concatenate([img_I, img_E, img_H], axis=1),
                    os.path.join(E_path,
                                 img_name + '_k' + str(k_index) + '_LEH.png'))

            if save_L:
                util.imsave(
                    util.single2uint(img_L),
                    os.path.join(E_path,
                                 img_name + '_k' + str(k_index) + '_LR.png'))

            psnr = util.calculate_psnr(
                img_E, img_H, border=border)  # change with your own border
            test_results['psnr'].append(psnr)
            logger.info('{:->4d}--> {:>10s} --k:{:>2d} PSNR: {:.2f}dB'.format(
                idx + 1, img_name + ext, k_index, psnr))

        # --------------------------------
        # Average PSNR
        # --------------------------------

        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        logger.info(
            '------> Average PSNR of ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'
            .format(testset_name, k_index, noise_level_model, ave_psnr))
        test_results_ave['psnr'].append(ave_psnr)
Exemplo n.º 28
0
def main():

    # --------------------------------
    # let's start!
    # --------------------------------
    utils_logger.logger_info('test_dpsr', log_path='test_dpsr.log')
    logger = logging.getLogger('test_dpsr')

    # basic setting
    # ================================================

    sf = 4  # scale factor
    noise_level_img = 0 / 255.0  # noise level of low quality image, default 0
    noise_level_model = noise_level_img  # noise level of model, default 0
    show_img = True

    use_srganplus = True  # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4)
    testsets = 'testsets'
    testset_current = 'BSD68'

    if use_srganplus and sf == 4:
        model_prefix = 'DPSRGAN'
        save_suffix = 'dpsrgan'
    else:
        model_prefix = 'DPSR'
        save_suffix = 'dpsr'

    model_path = os.path.join('DPSR_models', model_prefix + 'x%01d.pth' % (sf))

    iter_num = 15  # number of iterations, fixed
    n_channels = 3  # only color images, fixed
    border = sf**2  # shave boader to calculate PSNR, fixed

    # k_type = ('d', 'm', 'g')
    k_type = ('m')  # motion blur kernel

    # ================================================

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # --------------------------------
    # load model
    # --------------------------------
    model = SRResNet(in_nc=4,
                     out_nc=3,
                     nc=96,
                     nb=16,
                     upscale=sf,
                     act_mode='R',
                     upsample_mode='pixelshuffle')
    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path {:s}. Testing...'.format(model_path))

    # --------------------------------
    # read image (img) and kernel (k)
    # --------------------------------
    test_results = OrderedDict()

    for k_type_n in range(len(k_type)):

        # --1--> L_folder, folder of Low-quality images
        testsubset_current = 'x%01d_%01s' % (sf, k_type[k_type_n])
        L_folder = os.path.join(testsets, testset_current, testsubset_current)

        # --2--> E_folder, folder of Estimated images
        E_folder = os.path.join(testsets, testset_current,
                                testsubset_current + '_' + save_suffix)
        util.mkdir(E_folder)

        # --3--> H_folder, folder of High-quality images
        H_folder = os.path.join(testsets, testset_current, 'GT')

        test_results['psnr_' + k_type[k_type_n]] = []

        logger.info(L_folder)
        idx = 0

        for im in os.listdir(os.path.join(L_folder)):
            if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith(
                    '.png'):

                # --------------------------------
                # (1) img_L
                # --------------------------------
                idx += 1
                img_name, ext = os.path.splitext(im)
                img_L = util.imread_uint(os.path.join(L_folder, im),
                                         n_channels=n_channels)
                util.imshow(img_L) if show_img else None

                np.random.seed(seed=0)  # for reproducibility
                img_L = util.unit2single(img_L) + np.random.normal(
                    0, noise_level_img, img_L.shape)

                # --------------------------------
                # (2) kernel
                # --------------------------------
                k = loadmat(os.path.join(L_folder,
                                         img_name + '.mat'))['kernel']
                k = k.astype(np.float32)
                k /= np.sum(k)

                # --------------------------------
                # (3) get upperleft, denominator
                # --------------------------------
                upperleft, denominator = utils_deblur.get_uperleft_denominator(
                    img_L, k)

                # --------------------------------
                # (4) get rhos and sigmas
                # --------------------------------
                rhos, sigmas = utils_deblur.get_rho_sigma(sigma=max(
                    0.255 / 255., noise_level_model),
                                                          iter_num=iter_num)

                # --------------------------------
                # (5) main iteration
                # --------------------------------
                z = img_L
                rhos = np.float32(rhos)
                sigmas = np.float32(sigmas)

                for i in range(iter_num):

                    # --------------------------------
                    # step 1, Eq. (9) // FFT
                    # --------------------------------
                    rho = rhos[i]
                    if i != 0:
                        z = util.imresize_np(z, 1 / sf, True)

                    z = np.real(
                        np.fft.ifft2(
                            (upperleft + rho * np.fft.fft2(z, axes=(0, 1))) /
                            (denominator + rho),
                            axes=(0, 1)))
                    # imsave('LR_deblurred_%02d.png'%i, np.clip(z, 0, 1))

                    # --------------------------------
                    # step 2, Eq. (12) // super-resolver
                    # --------------------------------
                    sigma = torch.from_numpy(np.array(sigmas[i]))
                    img_L = util.single2tensor4(z)

                    noise_level_map = torch.ones(
                        (1, 1, img_L.size(2), img_L.size(3)),
                        dtype=torch.float).mul_(sigma)
                    img_L = torch.cat((img_L, noise_level_map), dim=1)
                    img_L = img_L.to(device)
                    # with torch.no_grad():
                    z = model(img_L)
                    z = util.tensor2single(z)

                # --------------------------------
                # (6) img_E
                # --------------------------------
                img_E = util.single2uint(z)  # np.uint8((z * 255.0).round())

                # --------------------------------
                # (7) img_H
                # --------------------------------
                img_H = util.imread_uint(os.path.join(H_folder,
                                                      img_name[:7] + '.png'),
                                         n_channels=n_channels)

                util.imshow(
                    np.concatenate([img_E, img_H], axis=1),
                    title='Recovered / Ground-truth') if show_img else None

                psnr = util.calculate_psnr(img_E, img_H, border=border)

                logger.info('{:->4d}--> {:>10s}, {:.2f}dB'.format(
                    idx, im, psnr))
                test_results['psnr_' + k_type[k_type_n]].append(psnr)

                util.imsave(img_E, os.path.join(E_folder, img_name + ext))

        ave_psnr = sum(test_results['psnr_' + k_type[k_type_n]]) / len(
            test_results['psnr_' + k_type[k_type_n]])
        logger.info(
            '------> Average PSNR(RGB) of ({} - {}) is : {:.2f} dB'.format(
                testset_current, testsubset_current, ave_psnr))
Exemplo n.º 29
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------

    noise_level_img = 0  # default: 0, noise level for LR image
    noise_level_model = noise_level_img  # noise level for model
    model_name = 'dpsr_x4_gan'  # 'dpsr_x2' | 'dpsr_x3' | 'dpsr_x4' | 'dpsr_x4_gan'
    testset_name = 'set5'  # test set,  'set5' | 'srbsd68'
    need_degradation = True  # default: True
    x8 = False  # default: False, x8 to boost performance
    sf = [int(s) for s in re.findall(r'\d+', model_name)][0]  # scale factor
    show_img = False  # default: False

    task_current = 'sr'  # 'dn' for denoising | 'sr' for super-resolution
    n_channels = 3  # fixed
    nc = 96  # fixed, number of channels
    nb = 16  # fixed, number of conv layers
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    result_name = testset_name + '_' + model_name
    border = sf if task_current == 'sr' else 0  # shave boader to calculate PSNR and SSIM
    model_path = os.path.join(model_pool, model_name + '.pth')

    # ----------------------------------------
    # L_path, E_path, H_path
    # ----------------------------------------

    L_path = os.path.join(testsets,
                          testset_name)  # L_path, for Low-quality images
    H_path = L_path  # H_path, for High-quality images
    E_path = os.path.join(results, result_name)  # E_path, for Estimated images
    util.mkdir(E_path)

    if H_path == L_path:
        need_degradation = True
    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    need_H = True if H_path is not None else False
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------

    from models.network_dpsr import MSRResNet_prior as net
    model = net(in_nc=n_channels + 1,
                out_nc=n_channels,
                nc=nc,
                nb=nb,
                upscale=sf,
                act_mode='R',
                upsample_mode='pixelshuffle')
    model.load_state_dict(torch.load(model_path), strict=False)
    model.eval()
    for k, v in model.named_parameters():
        v.requires_grad = False
    model = model.to(device)
    logger.info('Model path: {:s}'.format(model_path))
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    logger.info('Params number: {}'.format(number_parameters))

    test_results = OrderedDict()
    test_results['psnr'] = []
    test_results['ssim'] = []
    test_results['psnr_y'] = []
    test_results['ssim_y'] = []

    logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(
        model_name, noise_level_img, noise_level_model))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)
    H_paths = util.get_image_paths(H_path) if need_H else None

    for idx, img in enumerate(L_paths):

        # ------------------------------------
        # (1) img_L
        # ------------------------------------

        img_name, ext = os.path.splitext(os.path.basename(img))
        # logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
        img_L = util.imread_uint(img, n_channels=n_channels)
        img_L = util.uint2single(img_L)

        # degradation process, bicubic downsampling + Gaussian noise
        if need_degradation:
            img_L = util.modcrop(img_L, sf)
            img_L = util.imresize_np(img_L, 1 / sf)
            np.random.seed(seed=0)  # for reproducibility
            img_L += np.random.normal(0, noise_level_img / 255., img_L.shape)

        util.imshow(util.single2uint(img_L),
                    title='LR image with noise level {}'.format(
                        noise_level_img)) if show_img else None

        img_L = util.single2tensor4(img_L)
        noise_level_map = torch.full((1, 1, img_L.size(2), img_L.size(3)),
                                     noise_level_model / 255.).type_as(img_L)
        img_L = torch.cat((img_L, noise_level_map), dim=1)
        img_L = img_L.to(device)

        # ------------------------------------
        # (2) img_E
        # ------------------------------------

        if not x8:
            img_E = model(img_L)
        else:
            img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf)

        img_E = util.tensor2uint(img_E)

        if need_H:

            # --------------------------------
            # (3) img_H
            # --------------------------------

            img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
            img_H = img_H.squeeze()
            img_H = util.modcrop(img_H, sf)

            # --------------------------------
            # PSNR and SSIM
            # --------------------------------

            psnr = util.calculate_psnr(img_E, img_H, border=border)
            ssim = util.calculate_ssim(img_E, img_H, border=border)
            test_results['psnr'].append(psnr)
            test_results['ssim'].append(ssim)
            logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(
                img_name + ext, psnr, ssim))
            util.imshow(np.concatenate([img_E, img_H], axis=1),
                        title='Recovered / Ground-truth') if show_img else None

            if np.ndim(img_H) == 3:  # RGB image
                img_E_y = util.rgb2ycbcr(img_E, only_y=True)
                img_H_y = util.rgb2ycbcr(img_H, only_y=True)
                psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
                ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border)
                test_results['psnr_y'].append(psnr_y)
                test_results['ssim_y'].append(ssim_y)

        # ------------------------------------
        # save results
        # ------------------------------------

        util.imsave(img_E, os.path.join(E_path, img_name + '.png'))

    if need_H:
        ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
        ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
        logger.info(
            'Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'
            .format(result_name, sf, ave_psnr, ave_ssim))
        if np.ndim(img_H) == 3:
            ave_psnr_y = sum(test_results['psnr_y']) / len(
                test_results['psnr_y'])
            ave_ssim_y = sum(test_results['ssim_y']) / len(
                test_results['ssim_y'])
            logger.info(
                'Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'
                .format(result_name, sf, ave_psnr_y, ave_ssim_y))
Exemplo n.º 30
0
def main():

    # ----------------------------------------
    # Preparation
    # ----------------------------------------
    model_name = 'usrnet'  # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny'
    testset_name = 'set5'  # test set,  'set5' | 'srbsd68'
    test_sf = [4] if 'gan' in model_name else [
        2, 3, 4
    ]  # scale factor, from {1,2,3,4}

    show_img = False  # default: False
    save_L = True  # save LR image
    save_E = True  # save estimated image
    save_LEH = False  # save zoomed LR, E and H images

    # ----------------------------------------
    # load testing kernels
    # ----------------------------------------
    # kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels']
    kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']

    n_channels = 1 if 'gray' in model_name else 3  # 3 for color image, 1 for grayscale image
    model_pool = 'model_zoo'  # fixed
    testsets = 'testsets'  # fixed
    results = 'results'  # fixed
    noise_level_img = 0  # fixed: 0, noise level for LR image
    noise_level_model = noise_level_img  # fixed, noise level of model, default 0
    result_name = testset_name + '_' + model_name
    model_path = os.path.join(model_pool, model_name + '.pth')

    # ----------------------------------------
    # L_path = H_path, E_path, logger
    # ----------------------------------------
    L_path = os.path.join(
        testsets,
        testset_name)  # L_path and H_path, fixed, for Low-quality images
    E_path = os.path.join(results,
                          result_name)  # E_path, fixed, for Estimated images
    util.mkdir(E_path)

    logger_name = result_name
    utils_logger.logger_info(logger_name,
                             log_path=os.path.join(E_path,
                                                   logger_name + '.log'))
    logger = logging.getLogger(logger_name)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # ----------------------------------------
    # load model
    # ----------------------------------------
    if 'tiny' in model_name:
        model = net(n_iter=6,
                    h_nc=32,
                    in_nc=4,
                    out_nc=3,
                    nc=[16, 32, 64, 64],
                    nb=2,
                    act_mode="R",
                    downsample_mode='strideconv',
                    upsample_mode="convtranspose")
    else:
        model = net(n_iter=8,
                    h_nc=64,
                    in_nc=4,
                    out_nc=3,
                    nc=[64, 128, 256, 512],
                    nb=2,
                    act_mode="R",
                    downsample_mode='strideconv',
                    upsample_mode="convtranspose")

    model.load_state_dict(torch.load(model_path), strict=True)
    model.eval()
    for key, v in model.named_parameters():
        v.requires_grad = False
    number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
    model = model.to(device)

    logger.info('Model path: {:s}'.format(model_path))
    logger.info('Params number: {}'.format(number_parameters))
    logger.info('Model_name:{}, image sigma:{}'.format(model_name,
                                                       noise_level_img))
    logger.info(L_path)
    L_paths = util.get_image_paths(L_path)

    # --------------------------------
    # read images
    # --------------------------------
    test_results_ave = OrderedDict()
    test_results_ave['psnr_sf_k'] = []

    for sf in test_sf:

        for k_index in range(kernels.shape[1]):

            test_results = OrderedDict()
            test_results['psnr'] = []
            kernel = kernels[0, k_index].astype(np.float64)

            ## other kernels
            # kernel = utils_deblur.blurkernel_synthesis(h=25)  # motion kernel
            # kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel
            # kernel = sr.shift_pixel(kernel, sf)  # pixel shift; optional
            # kernel /= np.sum(kernel)

            util.surf(kernel) if show_img else None
            idx = 0

            for img in L_paths:

                # --------------------------------
                # (1) classical degradation, img_L
                # --------------------------------
                idx += 1
                img_name, ext = os.path.splitext(os.path.basename(img))
                img_H = util.imread_uint(
                    img, n_channels=n_channels)  # HR image, int8
                img_H = util.modcrop(img_H, np.lcm(sf, 8))  # modcrop

                # generate degraded LR image
                img_L = ndimage.filters.convolve(img_H,
                                                 kernel[..., np.newaxis],
                                                 mode='wrap')  # blur
                img_L = sr.downsample_np(
                    img_L, sf,
                    center=False)  # downsample, standard s-fold downsampler
                img_L = util.uint2single(img_L)  # uint2single

                np.random.seed(seed=0)  # for reproducibility
                img_L += np.random.normal(0, noise_level_img,
                                          img_L.shape)  # add AWGN

                util.imshow(util.single2uint(img_L)) if show_img else None

                x = util.single2tensor4(img_L)
                k = util.single2tensor4(kernel[..., np.newaxis])
                sigma = torch.tensor(noise_level_model).float().view(
                    [1, 1, 1, 1])
                [x, k, sigma] = [el.to(device) for el in [x, k, sigma]]

                # --------------------------------
                # (2) inference
                # --------------------------------
                x = model(x, k, sf, sigma)

                # --------------------------------
                # (3) img_E
                # --------------------------------
                img_E = util.tensor2uint(x)

                if save_E:
                    util.imsave(
                        img_E,
                        os.path.join(
                            E_path, img_name + '_x' + str(sf) + '_k' +
                            str(k_index + 1) + '_' + model_name + '.png'))

                # --------------------------------
                # (4) img_LEH
                # --------------------------------
                img_L = util.single2uint(img_L)
                if save_LEH:
                    k_v = kernel / np.max(kernel) * 1.2
                    k_v = util.single2uint(
                        np.tile(k_v[..., np.newaxis], [1, 1, 3]))
                    k_v = cv2.resize(k_v, (3 * k_v.shape[1], 3 * k_v.shape[0]),
                                     interpolation=cv2.INTER_NEAREST)
                    img_I = cv2.resize(
                        img_L, (sf * img_L.shape[1], sf * img_L.shape[0]),
                        interpolation=cv2.INTER_NEAREST)
                    img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v
                    img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L
                    util.imshow(np.concatenate([img_I, img_E, img_H], axis=1),
                                title='LR / Recovered / Ground-truth'
                                ) if show_img else None
                    util.imsave(
                        np.concatenate([img_I, img_E, img_H], axis=1),
                        os.path.join(
                            E_path, img_name + '_x' + str(sf) + '_k' +
                            str(k_index + 1) + '_LEH.png'))

                if save_L:
                    util.imsave(
                        img_L,
                        os.path.join(
                            E_path, img_name + '_x' + str(sf) + '_k' +
                            str(k_index + 1) + '_LR.png'))

                psnr = util.calculate_psnr(
                    img_E, img_H, border=sf**2)  # change with your own border
                test_results['psnr'].append(psnr)
                logger.info(
                    '{:->4d}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB'.
                    format(idx, img_name + ext, sf, k_index, psnr))

            ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr'])
            logger.info(
                '------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({}): {:.2f} dB'
                .format(testset_name, sf, k_index + 1, noise_level_model,
                        ave_psnr_k))
            test_results_ave['psnr_sf_k'].append(ave_psnr_k)
    logger.info(test_results_ave['psnr_sf_k'])