Exemplo n.º 1
0
    def __init__(self):
        super(DenseNet, self).__init__()

        # 卷积层部分
        self.conv = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(64), nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
        num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
        num_convs_in_dense_blocks = [4, 4, 4, 4]

        for i, num_convs in enumerate(num_convs_in_dense_blocks):
            DB = DenseBlock(num_convs, num_channels, growth_rate)
            self.conv.add_module("DenseBlosk_%d" % i, DB)
            # 上一个稠密块的输出通道数
            num_channels = DB.out_channels
            # 在稠密块之间加入通道数减半的过渡层
            if i != len(num_convs_in_dense_blocks) - 1:
                self.conv.add_module(
                    "transition_block_%d" % i,
                    self.transition_block(num_channels, num_channels // 2))
                num_channels = num_channels // 2
        self.conv.add_module("BN", nn.BatchNorm2d(num_channels))
        self.conv.add_module("relu", nn.ReLU())

        self.fc = nn.Sequential(
            utils.GlobalAvgPool2d(), utils.FlattenLayer(),
            nn.Linear(num_channels,
                      10))  # GlobalAvgPool2d的输出: (Batch, num_channels, 1, 1)
Exemplo n.º 2
0
    def __init__(self, ):
        super(ResNet, self).__init__()

        # 卷积层部分
        self.conv = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(64), nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
        self.conv.add_module("resnet_block1",
                             self.resnet_block(64, 64, 2, first_block=True))
        self.conv.add_module("resnet_block2", self.resnet_block(64, 128, 2))
        self.conv.add_module("resnet_block3", self.resnet_block(128, 256, 2))
        self.conv.add_module("resnet_block4", self.resnet_block(256, 512, 2))

        # 全连接层部分
        self.fc = nn.Sequential(
            utils.GlobalAvgPool2d(), utils.FlattenLayer(),
            nn.Linear(512, 10))  # GlobalAvgPool2d的输出: (Batch, 512, 1, 1)
Exemplo n.º 3
0
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   utils.GlobalAvgPool2d())

print('查看网络结构')

net = nn.Sequential(b1, b2, b3, b4, b5, utils.FlattenLayer(),
                    nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children():
    X = blk(X)
    print('output shape: ', X.shape)

print('获取和读取数据,这里缩减尺寸为 96')
batch_size = 256
train_iter, test_iter = utils.load_data_fashion_mnist(batch_size, resize=96)

print('训练模型,只 1 轮')
                               stride=2))
        else:
            blk.append(utils.Residual(out_channels, out_channels))
    return nn.Sequential(*blk)


net = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
                    nn.BatchNorm2d(64), nn.ReLU(),
                    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resent_block4", resnet_block(256, 512, 2))

net.add_module("global_avg_pool", utils.GlobalAvgPool2d())
net.add_module("fc", nn.Sequential(utils.FlattenLayer(), nn.Linear(512, 10)))


# 训练模型
def train_with_data_aug(train_augs, test_augs, lr=0.001):
    batch_size = 256
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    loss = torch.nn.CrossEntropyLoss()
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    utils.train(train_iter,
                test_iter,
                net,
                loss,
                optimizer,
Exemplo n.º 5
0
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    DB = DenseBlock(num_convs, num_channels, growth_rate)
    net.add_module("DenseBlosk_%d" % i, DB)
    # 上一个稠密块的输出通道数
    num_channels = DB.out_channels
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        net.add_module("transition_block_%d" % i,
                       transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2

net.add_module("BN", nn.BatchNorm2d(num_channels))  # 248
net.add_module("relu", nn.ReLU())
net.add_module(
    "global_avg_pool",
    d2l.GlobalAvgPool2d())  # GlobalAvgPool2d的输出: (Batch, num_channels, 1, 1)
net.add_module("fc",
               nn.Sequential(d2l.FlattenLayer(), nn.Linear(num_channels, 10)))

X = torch.rand((1, 1, 96, 96))
for name, layer in net.named_children():
    X = layer(X)
    print(name, ' output shape:\t', X.shape)


def load_data_fashion_mnist(batch_size,
                            resize=None,
                            root='input/FashionMNIST2065'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
Exemplo n.º 6
0
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())

net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(),
                    nn.Linear(1024, 10))

net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(),
                    nn.Linear(1024, 10))

X = torch.rand(1, 1, 96, 96)

for blk in net.children():
    X = blk(X)
    print('output shape: ', X.shape)

batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
Exemplo n.º 7
0
def nin_block(in_channels, out_channels, kernel_size, stride, padding):
    blk = nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
        nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU())
    return blk


net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),
                    nn.MaxPool2d(kernel_size=3, stride=2),
                    nin_block(96, 256, kernel_size=5, stride=1, padding=2),
                    nn.MaxPool2d(kernel_size=3, stride=2),
                    nin_block(256, 384, kernel_size=3, stride=1, padding=1),
                    nn.MaxPool2d(kernel_size=3, stride=2), nn.Dropout(0.5),
                    nin_block(384, 10, kernel_size=3, stride=1, padding=1),
                    utils.GlobalAvgPool2d(), utils.FlattenLayer())

X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children():
    X = blk(X)
    print(name, 'output shape: ', X.shape)

# 训练模型
batch_size = 128
train_iter, test_iter = utils.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.002, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
utils.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device,
                num_epochs)
Exemplo n.º 8
0
for i, num_convs in enumerate(num_convs_in_dense_block):
    DB = DenseBlock(num_convs, num_channels, growth_rate)
    net.add_module('DenseBlock_%d' % i, DB)
    # 上一个稠密块的输出通道数
    num_channels = DB.out_channels
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_block) - 1:
        net.add_module('transition_block_%d' % i,
                       transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2

# 加入全局平均池化和全连接
net.add_module('BN', nn.BatchNorm2d(num_channels))
net.add_module('relu', nn.ReLU())
net.add_module('global_avg_pool', utils.GlobalAvgPool2d())
net.add_module(
    'fc', nn.Sequential(utils.FlattenLayer(), nn.Linear(num_channels, 10)))

print('确保网络无误')
X = torch.rand((1, 1, 96, 96))
for name, layer in net.named_children():
    X = layer(X)
    print(name, 'output shape:\t', X.shape)

print('获取和读取数据')
batch_size = 256
train_iter, test_iter = utils.load_data_fashion_mnist(batch_size=batch_size,
                                                      resize=96)

print('训练模型')
        assert in_channels == out_channels  # 第一个模块的通道数同输入通道数一致
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
        else:
            blk.append(Residual(out_channels, out_channels))
    return nn.Sequential(*blk)


net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))

net.add_module("global_avg_pool", d2l.GlobalAvgPool2d())  # GlobalAvgPool2d的输出: (Batch, 512, 1, 1)
net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(512, 10)))

X = torch.rand((1, 1, 224, 224))
for name, layer in net.named_children():
    X = layer(X)
    print(name, ' output shape:\t', X.shape)


def load_data_fashion_mnist(batch_size, resize=None, root='input/FashionMNIST2065'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())